论文标题

古典谎言超级甲虫

The Nilpotent Cone for Classical Lie Superalgebras

论文作者

Jenkins, L. Andrew, Nakano, Daniel K.

论文摘要

在本文中,作者引入了nilpotent锥的类似物,$ {\ mathcal n} $,用于经典的谎言superalgebra,$ {\ mathfrak g} $,它概括了nilpotent圆锥的半粘膜lie lie algebras的定义。对于经典的简单谎言superalgebra,$ {\ mathfrak g} = {\ mathfrak g} _ {\ bar {0}} \ oplus {\ mathfrak g} _ {\ bar {\ bar {\ bar {1}}} g} _ {\ bar {0}} $,显示出有限的$ g _ {\ bar {0}}} $ - orbits $ {\ mathcal n} $。后来,作者证明了duflo-serganova的通勤品种,$ {\ mathcal x} $,用于$ {\ mathcal n} $中的任何经典简单的lie superalgebra。因此,我们的有限性概括并扩展了Duflo-Serganova在通勤品种上的工作。在本文的末尾给出了进一步的申请。

In this paper the authors introduce an analog of the nilpotent cone, ${\mathcal N}$, for a classical Lie superalgebra, ${\mathfrak g}$, that generalizes the definition for the nilpotent cone for semisimple Lie algebras. For a classical simple Lie superalgebra, ${\mathfrak g}={\mathfrak g}_{\bar{0}}\oplus {\mathfrak g}_{\bar{1}}$ with $\text{Lie }G_{\bar{0}}={\mathfrak g}_{\bar{0}}$, it is shown that there are finitely many $G_{\bar{0}}$-orbits on ${\mathcal N}$. Later the authors prove that the Duflo-Serganova commuting variety, ${\mathcal X}$, is contained in ${\mathcal N}$ for any classical simple Lie superalgebra. Consequently, our finiteness result generalizes and extends the work of Duflo-Serganova on the commuting variety. Further applications are given at the end of the paper.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源