论文标题
各向异性分形磁性域模式,以MN $ _ {1.4} $ PTSN
Anisotropic fractal magnetic domain pattern in bulk Mn$_{1.4}$PtSn
论文作者
论文摘要
带有$ d_ {2d} $对称性的四方化合物Mn $ _ {1.4} $ PTSN最近引起了人们的注意,这是第一个托管磁性静力米的已知材料,该材料与迄今为止已知的天空因其内部结构而不同。后者已经在许多具有手性晶体结构的磁铁中发现。在以前的作品中,Mn $ _ {1.4} $ ptsn中存在Antiskyrmions在薄板样品上的Lorentz Translist Electron显微镜($ \ sim $ 100〜nm厚)中,在真实空间中明确证明了Antiskyrmions。在本研究中,我们使用小角度的中子散射和磁力显微镜来对散装Mn $ _ {1.4} $ PTSN单晶体的磁纹理进行相互和真实的空间成像,并在不同的温度和施加的磁场上进行。我们发现,整体中的磁纹理与薄板样品明显不同。我们观察到旋转螺旋螺旋或反式晶格,而是观察到旋转重取向过渡温度上方的零场中闭合域的各向异性分形磁模式,该温度在高场中变成了一组气泡域。在旋转晶体转变温度下方,零场的平面内各向异性以及零场中的分形自我效果逐渐丢失,而高场中气泡域的形成仍然很强。我们的研究结果强调了薄板样品中偶极 - 偶极相互作用在稳定反扰流板中的重要性,并确定应指导搜索潜力(反)Skyrmion宿主材料的标准。此外,它们提供了先前报道的大体晶体的磁转运异常的一致解释。
The tetragonal compound Mn$_{1.4}$PtSn with the $D_{2d}$ symmetry recently attracted attention as the first known material that hosts magnetic antiskyrmions, which differ from the so far known skyrmions by their internal structure. The latter have been found in a number of magnets with the chiral crystal structure. In previous works, the existence of antiskyrmions in Mn$_{1.4}$PtSn was unambiguously demonstrated in real space by means of Lorentz transmission electron microscopy on thin-plate samples ($\sim$100~nm thick). In the present study, we used small-angle neutron scattering and magnetic force microscopy to perform reciprocal- and real-space imaging of the magnetic texture of bulk Mn$_{1.4}$PtSn single-crystals at different temperatures and in applied magnetic field. We found that the magnetic texture in the bulk differs significantly from that of thin-plate samples. Instead of spin helices or an antiskyrmion lattice, we observe an anisotropic fractal magnetic pattern of closure domains in zero field above the spin-reorientation transition temperature, which transforms into a set of bubble domains in high field. Below the spin-reorientation transition temperature the strong in-plane anisotropy as well as the fractal self-affinity in zero field is gradually lost, while the formation of bubble domains in high field remains robust. The results of our study highlight the importance of dipole-dipole interactions in thin-plate samples for the stabilization of antiskyrmions and identify criteria which should guide the search for potential (anti)skyrmion host materials. Moreover, they provide consistent interpretations of the previously reported magnetotransport anomalies of the bulk crystals.