论文标题
定选分类
Permutree sorting
论文作者
论文摘要
概括堆栈排序和$ c $ - 分组的排列,我们定义了定义分类算法。给定两个不相交的子集$ u $和$ d $的$ \ {2,\ dots,n-1 \} $,$(u,d)$ - 定期排序试图对置换$π\ in \ mathfrak {s} _n $ in \ mathfrak in \ mathfrak in \ mathfrak in \ mathfrak in \ y mathfrak in \ y mathfrak in \ y y y y y i < $ j \ in U $和$ kij $如果$ j \ in D $。该算法被视为探索自动机的一种方式,该算法要么拒绝$π$的所有减少表达式,要么接受$π$的减少表达式,其前缀都是$(u,d)$ - PEMISTREE-PEMSUTREE ARTAREABLE。
Generalizing stack sorting and $c$-sorting for permutations, we define the permutree sorting algorithm. Given two disjoint subsets $U$ and $D$ of $\{2, \dots, n-1\}$, the $(U,D)$-permutree sorting tries to sort the permutation $π\in \mathfrak{S}_n$ and fails if and only if there are $1 \le i < j < k \le n$ such that $π$ contains the subword $jki$ if $j \in U$ and $kij$ if $j \in D$. This algorithm is seen as a way to explore an automaton which either rejects all reduced expressions of $π$, or accepts those reduced expressions for $π$ whose prefixes are all $(U,D)$-permutree sortable.