论文标题

从布尔域之外的光谱独立性快速混合

Rapid mixing from spectral independence beyond the Boolean domain

论文作者

Feng, Weiming, Guo, Heng, Yin, Yitong, Zhang, Chihao

论文摘要

我们将光谱独立性的概念(由Anari,Liu和Oveis Gharan [alo20])从布尔域引入到一般离散域。该属性表征具有有限相关性的分布,这意味着相应的Glauber动力学正在迅速混合。 作为一个具体的应用,我们表明,用于取样适当$ q $彩色的Glauber动态在多项式时间中混合了无三角形图的家族,最高度$δ$提供$ q \ ge(α^*+Δ$任何常数。这是在该制度中使用可能无限$δ$采样适当$ q $颜色的第一种有效算法。我们建立光谱独立性的主要工具是Goldberg,Martin和Paterson [GMP05]的递归耦合。

We extend the notion of spectral independence (introduced by Anari, Liu, and Oveis Gharan [ALO20]) from the Boolean domain to general discrete domains. This property characterises distributions with limited correlations, and implies that the corresponding Glauber dynamics is rapidly mixing. As a concrete application, we show that Glauber dynamics for sampling proper $q$-colourings mixes in polynomial-time for the family of triangle-free graphs with maximum degree $Δ$ provided $q\ge (α^*+δ)Δ$ where $α^*\approx 1.763$ is the unique solution to $α^*=\exp(1/α^*)$ and $δ>0$ is any constant. This is the first efficient algorithm for sampling proper $q$-colourings in this regime with possibly unbounded $Δ$. Our main tool of establishing spectral independence is the recursive coupling by Goldberg, Martin, and Paterson [GMP05].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源