论文标题
指导中心轨道的准几何整合在分段线性环形场中
Quasi-geometric integration of guiding-center orbits in piecewise linear toroidal fields
论文作者
论文摘要
描述了一种用于带有三维场几何形状的环形融合装置中带电颗粒的指导中心轨道的数值集成方法。在这里,空间中电磁场的高阶插值取代了特殊的线性插值,从而导致局部线性汉密尔顿运动方程,具有分段恒定系数。这种方法降低了计算工作和噪声敏感性,同时保留了总能量,磁矩和相位空间体积。潜在的公式可以准确地处理分段线性场中的运动,因此保留了非典型的符号形式。由于轨道参数中的串联扩展,该算法本身仅是准几何。出于实际目的,在典型的示例中,向第四阶扩展将几何特性保留到计算机准确性。当应用于轴对称tokamak的无碰撞引导中心轨道和逼真的三维恒星构型时,该方法显示了可得为不变性的稳定的长期轨道动力学。在蒙特卡洛的运输系数评估中,准几何集成的计算效率比标准的第四阶runge-kutta积分器高的数量级。
A numerical integration method for guiding-center orbits of charged particles in toroidal fusion devices with three-dimensional field geometry is described. Here, high order interpolation of electromagnetic fields in space is replaced by a special linear interpolation, leading to locally linear Hamiltonian equations of motion with piecewise constant coefficients. This approach reduces computational effort and noise sensitivity while the conservation of total energy, magnetic moment and phase space volume is retained. The underlying formulation treats motion in piecewise linear fields exactly and thus preserves the non-canonical symplectic form. The algorithm itself is only quasi-geometric due to a series expansion in the orbit parameter. For practical purposes an expansion to the fourth order retains geometric properties down to computer accuracy in typical examples. When applied to collisionless guiding-center orbits in an axisymmetric tokamak and a realistic three-dimensional stellarator configuration, the method demonstrates stable long-term orbit dynamics conserving invariants. In Monte Carlo evaluation of transport coefficients, the computational efficiency of quasi-geometric integration is an order of magnitude higher than with a standard fourth order Runge-Kutta integrator.