论文标题

Fadacs:几次射击对抗域的适应体系结构,用于上下文感知的停车可用性感应

FADACS: A Few-shot Adversarial Domain Adaptation Architecture for Context-Aware Parking Availability Sensing

论文作者

Shao, Wei, Zhao, Sichen, Zhang, Zhen, Wang, Shiyu, Rahaman, Mohammad Saiedur, Song, Andy, Salim, Flora Dilys

论文摘要

有关停车可用性的现有研究主要依赖于广泛的上下文和历史信息。实际上,此类信息的可用性是一个挑战,因为它需要连续收集感官信号。在这项研究中,我们设计了一个端到端的转移学习框架,用于停车可用性感测,以预测停车数据不足以供数据渴望数据模型的领域的停车占用。该框架克服了两个主要挑战:1)许多实际情况无法为大多数现有数据驱动的模型提供足够的数据,而2)由于城市结构和空间特征的不同,很难合并传感器数据和异质上下文信息。我们的工作采用了广泛使用的概念,即对逆性域的适应,以通过利用来自其他具有相似特征的区域的数据来预测没有丰富传感器数据的区域的停车占用率。在本文中,我们利用了位于两个不同城市的传感器,一个是市中心,另一个是沿海旅游小镇的传感器。我们还利用来自外部资源(包括天气和兴趣点)的异质时空上下文信息。在不同情况下,我们量化了我们提出的框架的强度,并将其与现有的数据驱动方法进行比较。结果表明,所提出的框架与现有的最新方法相媲美,还为停车可用性预测提供了一些有价值的见解。

Existing research on parking availability sensing mainly relies on extensive contextual and historical information. In practice, the availability of such information is a challenge as it requires continuous collection of sensory signals. In this study, we design an end-to-end transfer learning framework for parking availability sensing to predict parking occupancy in areas in which the parking data is insufficient to feed into data-hungry models. This framework overcomes two main challenges: 1) many real-world cases cannot provide enough data for most existing data-driven models, and 2) it is difficult to merge sensor data and heterogeneous contextual information due to the differing urban fabric and spatial characteristics. Our work adopts a widely-used concept, adversarial domain adaptation, to predict the parking occupancy in an area without abundant sensor data by leveraging data from other areas with similar features. In this paper, we utilise more than 35 million parking data records from sensors placed in two different cities, one a city centre and the other a coastal tourist town. We also utilise heterogeneous spatio-temporal contextual information from external resources, including weather and points of interest. We quantify the strength of our proposed framework in different cases and compare it to the existing data-driven approaches. The results show that the proposed framework is comparable to existing state-of-the-art methods and also provide some valuable insights on parking availability prediction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源