论文标题

图形的无标志性laplacian光谱半径,带有线性森林

The signless Laplacian spectral radius of graphs with forbidding linear forests

论文作者

Chen, Ming-Zhu, Liu, A-Ming, Zhang, Xiao-Dong

论文摘要

Turán型极端问题是如何在所有图表上最大化边缘数量,而这些边数不包含固定的禁止子图。同样,Turán型极端问题的光谱是如何在所有不包含固定子图的图表上最大化(无标志性的Laplacian)光谱半径。在本文中,我们首先在边缘数量上呈现$ k \ cdot P_3 $的稳定性结果,然后确定所有极端图表,在所有图形上最大化无标志性的Laplacian光谱半径,这些图形分别不包含两个固定的线性森林,这些线性不包含两个奇数路径或$ k \ cdot p_3 $作为一个小节。

Turán type extremal problem is how to maximize the number of edges over all graphs which do not contain fixed forbidden subgraphs. Similarly, spectral Turán type extremal problem is how to maximize (signless Laplacian) spectral radius over all graphs which do not contain fixed subgraphs. In this paper, we first present a stability result for $k\cdot P_3$ in terms of the number of edges and then determine all extremal graphs maximizing the signless Laplacian spectral radius over all graphs which do not contain a fixed linear forest with at most two odd paths or $k\cdot P_3$ as a subgraph, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源