论文标题

多域医学图像检索的通用模型

Universal Model for Multi-Domain Medical Image Retrieval

论文作者

Feng, Yang, Liu, Yubao, Luo, Jiebo

论文摘要

医疗图像检索(MIR)可帮助医生迅速找到类似患者的数据,这可以大大帮助诊断过程。由于数字成像方式的广泛使用和医疗图像存储库的增长,MIR变得越来越有帮助。但是,医院中各种数字成像方式的普及也给MIR带来了一些挑战。通常,一个图像检索模型仅经过训练以处理一种模式或一个源的图像。如果需要从多个来源或域检索医学图像,则需要维护多个检索模型,这是成本效益。在本文中,我们研究了一项重要但尚未开发的任务:如何训练适用于来自多个领域的医学图像的MIR模型?仅仅融合来自多个域的训练数据无法解决此问题,因为使用现有方法一起训练时,某些域变得更加拟合。因此,我们建议通过通用嵌入来解决多个专业MIR模型中的知识,以解决此问题。使用皮肤病,X射线和视网膜图像数据集,我们验证我们提出的通用模型可以有效地完成多域miR。

Medical Image Retrieval (MIR) helps doctors quickly find similar patients' data, which can considerably aid the diagnosis process. MIR is becoming increasingly helpful due to the wide use of digital imaging modalities and the growth of the medical image repositories. However, the popularity of various digital imaging modalities in hospitals also poses several challenges to MIR. Usually, one image retrieval model is only trained to handle images from one modality or one source. When there are needs to retrieve medical images from several sources or domains, multiple retrieval models need to be maintained, which is cost ineffective. In this paper, we study an important but unexplored task: how to train one MIR model that is applicable to medical images from multiple domains? Simply fusing the training data from multiple domains cannot solve this problem because some domains become over-fit sooner when trained together using existing methods. Therefore, we propose to distill the knowledge in multiple specialist MIR models into a single multi-domain MIR model via universal embedding to solve this problem. Using skin disease, x-ray, and retina image datasets, we validate that our proposed universal model can effectively accomplish multi-domain MIR.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源