论文标题
痴呆预测应用变异量子分类器
Dementia Prediction Applying Variational Quantum Classifier
论文作者
论文摘要
痴呆症是全球第五个死亡原因,每年有1000万例新病例。使用机器学习技术的医疗保健应用几乎达到了物理限制,而更多的数据由于诊断率的提高而获得了更多数据。 Quantum机器学习(QML)技术的最新研究发现了不同的方法,这些方法可能对加速现有机器学习模型的训练过程有用,并为学习更复杂的模式提供了替代方案。这项工作旨在报告量子机学习算法的现实应用,我们发现,在IBM的框架中使用实现的版本进行变异量子分类(VQC)允许老年患者的痴呆症的痴呆,这种方法证明,与经典支持向量机器相比,该方法可提供更一致的结果(SEVector Machine(SEVector Machine)(使用linseal)数量相比。
Dementia is the fifth cause of death worldwide with 10 million new cases every year. Healthcare applications using machine learning techniques have almost reached the physical limits while more data is becoming available resulting from the increasing rate of diagnosis. Recent research in Quantum Machine Learning (QML) techniques have found different approaches that may be useful to accelerate the training process of existing machine learning models and provide an alternative to learn more complex patterns. This work aims to report a real-world application of a Quantum Machine Learning Algorithm, in particular, we found that using the implemented version for Variational Quantum Classiffication (VQC) in IBM's framework Qiskit allows predicting dementia in elderly patients, this approach proves to provide more consistent results when compared with a classical Support Vector Machine (SVM) with a linear kernel using different number of features.