论文标题

初始条件对各向异性单独宇宙模拟的影响:电离时代的潮汐反应增强

Impacts of pre-initial conditions on anisotropic separate universe simulations: a boosted tidal response in the epoch of reionization

论文作者

Masaki, Shogo, Nishimichi, Takahiro, Takada, Masahiro

论文摘要

为了生成宇宙学$ n $体型模拟的初始条件,需要准备模拟颗粒的均匀分布,即所谓的原始条件(PER-IC)。构建前IC的标准方法是将颗粒放在三维空间坐标中均匀间隔的晶格网格上。但是,即使在每个粒子根据宇宙学扰动中最初的位移之后,颗粒分布仍在显示人造各向异性。这样的人为会在稍后的时间中引起模拟中的系统效应,直到进化的颗粒分布充分消除了初始各向异性。在本文中,我们研究了前IC对各向异性单独宇宙模拟的影响,其中大规模潮汐场对结构形成的影响使用局部背景中的各向异性扩张(模拟量)。为了量化影响,我们比较了使用标准网格前的IC和玻璃的模拟,后者应该抑制初始各向异性。我们表明,直到$ z \ sim 9 $,在网格前的IC模拟中都可以看到人工特征,而在我们研究的尺度范围内,玻璃前IC模拟似乎是稳定且准确的。从这些结果中,我们发现,与在红移范围内的准非线性政权中对扰动理论的领先预测$ 5 \ Lessim z \ Lessim z \ Lessim 15 $相比,大规模潮汐领域与物质聚集的耦合相比,增强了。在电离时期。

To generate initial conditions for cosmological $N$-body simulations, one needs to prepare a uniform distribution of simulation particles, so-called the pre-initial condition (pre-IC). The standard method to construct the pre-IC is to place the particles on the lattice grids evenly spaced in the three-dimensional spatial coordinates. However, even after the initial displacement of each particle according to cosmological perturbations, the particle distribution remains to display an artificial anisotropy. Such an artifact causes systematic effects in simulations at later time until the evolved particle distribution sufficiently erases the initial anisotropy. In this paper, we study the impacts of the pre-IC on the anisotropic separate universe simulation, where the effect of large-scale tidal field on structure formation is taken into account using the anisotropic expansion in a local background (simulation volume). To quantify the impacts, we compare the simulations employing the standard grid pre-IC and the glass one, where the latter is supposed to suppress the initial anisotropy. We show that the artificial features in the grid pre-IC simulations are seen until $z\sim 9$, while the glass pre-IC simulations appear to be stable and accurate over the range of scales we study. From these results we find that a coupling of the large-scale tidal field with matter clustering is enhanced compared to the leading-order prediction of perturbation theory in the quasi non-linear regime in the redshift range $5\lesssim z\lesssim 15$, indicating the importance of tidal field on structure formation at such high redshifts, e.g. during the epoch of reionization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源