论文标题

元学习的自适应任务抽样

Adaptive Task Sampling for Meta-Learning

论文作者

Liu, Chenghao, Wang, Zhihao, Sahoo, Doyen, Fang, Yuan, Zhang, Kun, Hoi, Steven C. H.

论文摘要

元学习方法已在计算机视觉中进行了广泛的研究和应用,尤其是用于少量射击分类任务。元学习进行几次分类的关键思想是,通过在测试时间中通过随机采样元训练数据中的类别来模仿测试时间所面临的几种情况,以构造一些弹性训练的少量任务。虽然丰富的工作仅着重于如何在任务中提取元知识,但我们利用有关如何产生信息任务的互补问题。我们认为,随机抽样的任务可能是最佳和不信息的(例如,将“狗”从“笔记本电脑”分类的任务通常是微不足道的)。在本文中,我们提出了一种自适应任务抽样方法,以提高概括性能。与基于实例的采样不同,由于每个情节中任务的隐含定义,基于任务的采样更具挑战性。因此,我们因此提出了一种基于贪婪的班级采样方法,该方法根据类别的势能选择困难的任务。我们在两个少量分类基准上评估了自适应任务抽样方法,并在不同的功能主机,元学习算法和数据集中实现了一致的改进。

Meta-learning methods have been extensively studied and applied in computer vision, especially for few-shot classification tasks. The key idea of meta-learning for few-shot classification is to mimic the few-shot situations faced at test time by randomly sampling classes in meta-training data to construct few-shot tasks for episodic training. While a rich line of work focuses solely on how to extract meta-knowledge across tasks, we exploit the complementary problem on how to generate informative tasks. We argue that the randomly sampled tasks could be sub-optimal and uninformative (e.g., the task of classifying "dog" from "laptop" is often trivial) to the meta-learner. In this paper, we propose an adaptive task sampling method to improve the generalization performance. Unlike instance based sampling, task based sampling is much more challenging due to the implicit definition of the task in each episode. Therefore, we accordingly propose a greedy class-pair based sampling method, which selects difficult tasks according to class-pair potentials. We evaluate our adaptive task sampling method on two few-shot classification benchmarks, and it achieves consistent improvements across different feature backbones, meta-learning algorithms and datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源