论文标题

在神经影像学中利用病变特征和程序偏见:反向尺度空间的双重任务拆分动力学

Leveraging both Lesion Features and Procedural Bias in Neuroimaging: An Dual-Task Split dynamics of inverse scale space

论文作者

Sun, Xinwei, Han, Wenjing, Hu, Lingjing, Yao, Yuan, Wang, Yizhou

论文摘要

病变特征的预测和选择是基于体素的神经图像分析中的两个重要任务。现有的多元学习模型同时采用两个任务并同时进行优化。但是,除了病变特征外,我们还观察到还有另一种类型的功能,这通常是在预处理步骤的过程中引入的,这可以改善预测结果。我们将这种类型的功能称为程序偏见。因此,在本文中,我们建议神经图像数据中的特征/体素包括三个正交部分:病变特征,程序偏置和无效特征。为了稳定地选择病变特征并利用程序偏置为预测,我们提出了一种迭代算法(称为GSPLIT LBI),作为逆规模空间的差分包含的离散化,这是可变拆分方案和线性化的Bregman Iteration(LBI)的组合。具体而言,在变量分配项的情况下,引入了两个估计器并分开,即一个用于特征选择(稀疏估计器),另一个用于预测(密集估计器)。通过线性化的Bregman迭代(LBI)实施,可以在稀疏估计器上以不同的稀疏水平返回两个估计器的解决方案路径,以选择病变特征。此外,估计量的密集量可以额外利用程序偏置以进一步改善预测结果。为了测试我们方法的功效,我们对模拟研究和阿尔茨海默氏病神经影像学计划(ADNI)数据库进行实验。我们的模型的有效性和好处可以通过改善预测结果以及可视化的程序偏差和病变特征的解释性来显示。

The prediction and selection of lesion features are two important tasks in voxel-based neuroimage analysis. Existing multivariate learning models take two tasks equivalently and optimize simultaneously. However, in addition to lesion features, we observe that there is another type of feature, which is commonly introduced during the procedure of preprocessing steps, which can improve the prediction result. We call such a type of feature as procedural bias. Therefore, in this paper, we propose that the features/voxels in neuroimage data are consist of three orthogonal parts: lesion features, procedural bias, and null features. To stably select lesion features and leverage procedural bias into prediction, we propose an iterative algorithm (termed GSplit LBI) as a discretization of differential inclusion of inverse scale space, which is the combination of Variable Splitting scheme and Linearized Bregman Iteration (LBI). Specifically, with a variable the splitting term, two estimators are introduced and split apart, i.e. one is for feature selection (the sparse estimator) and the other is for prediction (the dense estimator). Implemented with Linearized Bregman Iteration (LBI), the solution path of both estimators can be returned with different sparsity levels on the sparse estimator for the selection of lesion features. Besides, the dense the estimator can additionally leverage procedural bias to further improve prediction results. To test the efficacy of our method, we conduct experiments on the simulated study and Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The validity and the benefit of our model can be shown by the improvement of prediction results and the interpretability of visualized procedural bias and lesion features.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源