论文标题

AE-NET:受人认知机制启发的自主进化图像融合方法

AE-Net: Autonomous Evolution Image Fusion Method Inspired by Human Cognitive Mechanism

论文作者

Fang, Aiqing, Zhao, Xinbo, Yang, Jiaqi, Cao, Shihao, Zhang, Yanning

论文摘要

为了解决受人脑认知机制启发的图像融合任务的鲁棒性和普遍性问题,我们提出了具有自主进化能力的稳健和一般图像融合方法,因此用AE-net表示。通过对多个图像融合方法的协作优化来模拟人脑的认知过程,无监督的学习图像融合任务可以转变为半监督的图像融合任务或监督的图像融合任务,从而促进网络模型权重的进化能力。首先,分析了人脑认知机制与图像融合任务之间的关系,并建立了物理模型以模拟人脑认知机制。其次,我们分析了现有的图像融合方法和图像融合损失函数,选择具有互补特征的图像融合方法来构建算法模块,建立多损失关节评估函数以获得算法模块的最佳解决方案。每个图像的最佳解决方案用于指导网络模型的重量训练。我们的图像融合方法可以有效地统一跨模式图像融合任务和相同的模态图像融合任务,并有效地克服不同数据集之间的数据分布的差异。最后,广泛的数值结果验证了我们方法对各种图像融合数据集的有效性和优势,包括多聚焦数据集,红外和Visi-Ble数据集,医疗图像数据集和多曝光数据集。全面的实验证明了我们的图像融合方法在鲁棒性和通用性方面的优越性。此外,实验结果还取消了人脑认知机制提高图像融合的鲁棒性和一般性的有效性。

In order to solve the robustness and generality problems of the image fusion task,inspired by the human brain cognitive mechanism, we propose a robust and general image fusion method with autonomous evolution ability, and is therefore denoted with AE-Net. Through the collaborative optimization of multiple image fusion methods to simulate the cognitive process of human brain, unsupervised learning image fusion task can be transformed into semi-supervised image fusion task or supervised image fusion task, thus promoting the evolutionary ability of network model weight. Firstly, the relationship between human brain cognitive mechanism and image fusion task is analyzed and a physical model is established to simulate human brain cognitive mechanism. Secondly, we analyze existing image fusion methods and image fusion loss functions, select the image fusion method with complementary features to construct the algorithm module, establish the multi-loss joint evaluation function to obtain the optimal solution of algorithm module. The optimal solution of each image is used to guide the weight training of network model. Our image fusion method can effectively unify the cross-modal image fusion task and the same modal image fusion task, and effectively overcome the difference of data distribution between different datasets. Finally, extensive numerical results verify the effectiveness and superiority of our method on a variety of image fusion datasets, including multi-focus dataset, infrared and visi-ble dataset, medical image dataset and multi-exposure dataset. Comprehensive experiments demonstrate the superiority of our image fusion method in robustness and generality. In addition, experimental results also demonstate the effectiveness of human brain cognitive mechanism to improve the robustness and generality of image fusion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源