论文标题

非热门开放系统中的运输和光谱特征

Transport and spectral features in non-Hermitian open systems

论文作者

Tzortzakakis, A. F., Makris, K. G., Szameit, A., Economou, E. N.

论文摘要

我们研究了非富米一维晶格的传输和光谱特性,其对角线矩阵元素是随机的复杂变量,同时具有正面(损失)和负(损失)和负(损失)和负值:它们的分布是其通常具有二进制成对的二进制成对偏差的,具有其遗传性的二进制成对的属性,并具有遗传性的属性,并具有遗传性传输,并且是Delocalized且属性的属性。与Hermitian案件相反,我们的非热门系统中的所有州都位于本地化。此外,对于二进制成对相关的情况,特征值频谱在复杂平面上表现出意外的复杂分裂结构,并且随着非铁疾病的增加,特征值倾向于在复杂平面的小面积中合并,特征称为“特征”,称为“特征浓缩”。尽管安德森(Anderson)在所有特征状态上都有很强的定位,但该系统似乎并非通过扩散而表现出运输,而是通过新机制,即使位于遥远地点的状态之间的突然跳跃。这似乎是开放的非热随机系统的一般特征。还讨论了我们发现与最新实验结果的关系。

We study the transport and spectral properties of a non-Hermitian one-dimensional disordered lattice, the diagonal matrix elements of which are random complex variables taking both positive (loss) and negative (gain) imaginary values: Their distribution is either the usual rectangular one or a binary pair-correlated one possessing, in its Hermitian version, delocalized states, and unusual transport properties. Contrary to the Hermitian case, all states in our non-Hermitian system are localized. In addition, the eigenvalue spectrum, for the binary pair-correlated case, exhibits an unexpected intricate fractallike structure on the complex plane and with increasing non-Hermitian disorder, the eigenvalues tend to coalesce in particular small areas of the complex plane, a feature termed "eigenvalue condensation". Despite the strong Anderson localization of all eigenstates, the system appears to exhibit transport not by diffusion but by a new mechanism through sudden jumps between states located even at distant sites. This seems to be a general feature of open non-Hermitian random systems. The relation of our findings to recent experimental results is also discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源