论文标题

重新访问Rubik的立方体:3D医疗图像分段的自我监督学习和体积转换

Revisiting Rubik's Cube: Self-supervised Learning with Volume-wise Transformation for 3D Medical Image Segmentation

论文作者

Tao, Xing, Li, Yuexiang, Zhou, Wenhui, Ma, Kai, Zheng, Yefeng

论文摘要

深度学习高度依赖于注释数据的数量。但是,3D体积医学数据的注释要求经验丰富的医生花费数小时甚至数天进行调查。自我监督学习是通过深入利用原始数据信息来摆脱培训数据的强大要求的潜在解决方案。在本文中,我们为体积医学图像提出了一个新颖的自学学习框架。具体来说,我们建议将上下文修复任务(即Rubik的Cube ++)预先培训3D神经网络。与现有的基于上下文恢复的方法不同,我们采用了一个批量转换来进行上下文置换,这鼓励网络更好地利用器官固有的3D解剖信息。与从头开始的训练策略相比,魔方++预先训练的体重的微调可以在各种任务(例如胰腺分割和脑组织分割)中获得更好的性能。实验结果表明,我们的自我监督学习方法可以显着提高体积医学数据集上3D深度学习网络的准确性,而无需使用额外的数据。

Deep learning highly relies on the quantity of annotated data. However, the annotations for 3D volumetric medical data require experienced physicians to spend hours or even days for investigation. Self-supervised learning is a potential solution to get rid of the strong requirement of training data by deeply exploiting raw data information. In this paper, we propose a novel self-supervised learning framework for volumetric medical images. Specifically, we propose a context restoration task, i.e., Rubik's cube++, to pre-train 3D neural networks. Different from the existing context-restoration-based approaches, we adopt a volume-wise transformation for context permutation, which encourages network to better exploit the inherent 3D anatomical information of organs. Compared to the strategy of training from scratch, fine-tuning from the Rubik's cube++ pre-trained weight can achieve better performance in various tasks such as pancreas segmentation and brain tissue segmentation. The experimental results show that our self-supervised learning method can significantly improve the accuracy of 3D deep learning networks on volumetric medical datasets without the use of extra data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源