论文标题

基于广义运算符的双场量子密钥分布的有限键分析

Finite-key analysis for twin-field quantum key distribution based on generalized operator dominance condition

论文作者

Wang, Rui-Qiang, Yin, Zhen-Qiang, Lu, Feng-Yu, Wang, Rong, Wang, Shuang, Chen, Wei, Huang, Wei, Xu, Bing-Jie, Guo, Guang-Can, Han, Zheng-Fu

论文摘要

量子密钥分布(QKD)可以帮助两个遥远的同龄人共享秘密钥匙位,其安全性由物理定律保证。实际上,随着通道距离的增加,QKD协议的秘密关键率总是会降低,这严重限制了QKD的应用。最近,已经提出并深入研究了双场(TF)QKD,因为它可以超过率距离极限并大大增加QKD的可实现距离。 Inderplyly,K。Maeda等。 al。提出了基于操作员优势条件的TF-QKD的简单有限键分析。尽管他们表明他们的方法足以超越率距离极限,但其操作员的主导条件不是一般的,即,它只能在三种诱饵状态的情况下应用,这意味着无法通过引入更多的诱饵状态来提高其关键速率,即使在准备无限的无限诱饵状态和光学脉冲脉冲的情况下也无法达到渐近的束缚。在这里,为了弥合这一差距,我们通过设计新操作员的主导条件提出了对TF-QKD的有限键分析。我们表明,通过添加诱饵状态的数量,可以进一步提高秘密关键速度并接近渐近结合。我们的理论可以直接用于TF-QKD实验中以获得更高的秘密关键率。我们的结果可以直接用于实验中以获得更高的关键率。

Quantum key distribution (QKD) can help two distant peers to share secret key bits, whose security is guaranteed by the law of physics. In practice, the secret key rate of a QKD protocol is always lowered with the increasing of channel distance, which severely limits the applications of QKD. Recently, twin-field (TF) QKD has been proposed and intensively studied, since it can beat the rate-distance limit and greatly increase the achievable distance of QKD. Remarkalebly, K. Maeda et. al. proposed a simple finite-key analysis for TF-QKD based on operator dominance condition. Although they showed that their method is sufficient to beat the rate-distance limit, their operator dominance condition is not general, i.e. it can be only applied in three decoy states scenarios, which implies that its key rate cannot be increased by introducing more decoy states, and also cannot reach the asymptotic bound even in case of preparing infinite decoy states and optical pulses. Here, to bridge this gap, we propose an improved finite-key analysis of TF-QKD through devising new operator dominance condition. We show that by adding the number of decoy states, the secret key rate can be furtherly improved and approach the asymptotic bound. Our theory can be directly used in TF-QKD experiment to obtain higher secret key rate. Our results can be directly used in experiments to obtain higher key rates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源