论文标题

多项式优化的光谱松弛层次结构

A hierarchy of spectral relaxations for polynomial optimization

论文作者

Mai, Ngoc Hoang Anh, Magron, Victor, Lasserre, Jean-Bernard

论文摘要

我们表明(i)任何受约束的多项式优化问题(POP)在欧几里得球中包含的变体上具有等效的公式,并且(ii)矩层的层次层次结构中所得的半芬特弛豫具有恒定的跟踪特性(CTP)。然后,我们利用CTP来避免通过内点方法求解半决赛松弛,而宁愿使用临时光谱方法,以最大程度地减少基质铅笔的最大特征值。可以保证融合到半决赛松弛的最佳值。结果,我们获得了初始POP的非平滑“光谱弛豫”层次结构。该频谱层次结构的效率和鲁棒性针对球体上的几个相等性的POP以及随机产生的四次约束二次问题(QCQPS)的样本进行了测试。

We show that (i) any constrained polynomial optimization problem (POP) has an equivalent formulation on a variety contained in an Euclidean sphere and (ii) the resulting semidefinite relaxations in the moment-SOS hierarchy have the constant trace property (CTP) for the involved matrices. We then exploit the CTP to avoid solving the semidefinite relaxations via interior-point methods and rather use ad-hoc spectral methods that minimize the largest eigenvalue of a matrix pencil. Convergence to the optimal value of the semidefinite relaxation is guaranteed. As a result we obtain a hierarchy of nonsmooth "spectral relaxations" of the initial POP. Efficiency and robustness of this spectral hierarchy is tested against several equality constrained POPs on a sphere as well as on a sample of randomly generated quadratically constrained quadratic problems (QCQPs).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源