论文标题

高保真在一个开尔文上方的硅中的两倍大门

High-fidelity two-qubit gates in silicon above one Kelvin

论文作者

Petit, L., Russ, M., Eenink, H. G. J., Lawrie, W. I. L., Clarke, J. S., Vandersypen, L. M. K., Veldhorst, M.

论文摘要

量子点中的旋转量子位定义了一个有吸引力的量子信息平台,因为它们与半导体制造,其长相干时间以及在超过一个开kelvin的温度下运行的能力。可以通过脉冲交换相互作用或通过驱动旋转来实现量子逻辑。在这里,我们表明可以将这些方法组合起来,以在单个设备中执行许多天然的两倍大门,从而减少了操作开销以执行量子算法。我们证明,在一个高于一个开尔文的温度下,单量子旋转以及两数Qubit的大门crot,Cphase和swap。此外,我们实现绝热,绝热和复合序列,以优化量子控制的保真度和栅极时间。我们发现可以在67 ns之内执行的两倍门,并通过理论分析我们预测超过99%的实验噪声源。这承诺使用量子硬件可以嵌入量子电子设备的量子电子设备,以用于量子集成电路。

Spin qubits in quantum dots define an attractive platform for scalable quantum information because of their compatibility with semiconductor manufacturing, their long coherence times, and the ability to operate at temperatures exceeding one Kelvin. Qubit logic can be implemented by pulsing the exchange interaction or via driven rotations. Here, we show that these approaches can be combined to execute a multitude of native two-qubit gates in a single device, reducing the operation overhead to perform quantum algorithms. We demonstrate, at a temperature above one Kelvin, single-qubit rotations together with the two-qubit gates CROT, CPHASE and SWAP. Furthermore we realize adiabatic, diabatic and composite sequences to optimize the qubit control fidelity and the gate time. We find two-qubit gates that can be executed within 67 ns and by theoretically analyzing the experimental noise sources we predict fidelities exceeding 99%. This promises fault-tolerant operation using quantum hardware that can be embedded with classical electronics for quantum integrated circuits.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源