论文标题

注意力2angiogan:使用生成对抗网络从视网膜眼睛图像中合成荧光素血管造影

Attention2AngioGAN: Synthesizing Fluorescein Angiography from Retinal Fundus Images using Generative Adversarial Networks

论文作者

Kamran, Sharif Amit, Hossain, Khondker Fariha, Tavakkoli, Alireza, Zuckerbrod, Stewart Lee

论文摘要

荧光素血管造影(FA)是一种采用指定摄像头来摄影的技术,并结合了激发和屏障过滤器。 FA还需要静脉注射的荧光素染料,这可能会导致从恶心,呕吐到致命的过敏反应的不良反应。目前,没有其他快速和非侵入性技术可以在不与眼底摄影相结合的情况下产生FA。为了消除对侵入性FA提取程序的需求,我们引入了一个基于注意力的生成网络,该网络可以从眼底图像中合成荧光素血管造影。拟议的GAN结合了发电机中的多个基于注意力的跳过连接,并包括发电机和鉴别器的新型残留块。它利用重建,功能匹配和感知损失以及对抗性训练来产生逼真的血管造影,专家很难将其与真实的血管造影区分开。我们的实验证实,所提出的体系结构超过了最新的生成网络,用于眼底到Angio翻译任务。

Fluorescein Angiography (FA) is a technique that employs the designated camera for Fundus photography incorporating excitation and barrier filters. FA also requires fluorescein dye that is injected intravenously, which might cause adverse effects ranging from nausea, vomiting to even fatal anaphylaxis. Currently, no other fast and non-invasive technique exists that can generate FA without coupling with Fundus photography. To eradicate the need for an invasive FA extraction procedure, we introduce an Attention-based Generative network that can synthesize Fluorescein Angiography from Fundus images. The proposed gan incorporates multiple attention based skip connections in generators and comprises novel residual blocks for both generators and discriminators. It utilizes reconstruction, feature-matching, and perceptual loss along with adversarial training to produces realistic Angiograms that is hard for experts to distinguish from real ones. Our experiments confirm that the proposed architecture surpasses recent state-of-the-art generative networks for fundus-to-angio translation task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源