论文标题

球形$ p $ -spin型号的马鞍数

The number of saddles of the spherical $p$-spin model

论文作者

Auffinger, Antonio, Gold, Julian

论文摘要

我们表明,当两者均为正时,球形纯$ p $ -spin模型的马鞍的复杂性与退火的复杂性一致。确切地说,我们表明,在给定间隔中给定有限索引的临界值数量的第二刻是第一瞬间的增长率的两倍。

We show that the quenched complexity of saddles of the spherical pure $p$-spin model agrees with the annealed complexity when both are positive. Precisely, we show that the second moment of the number of critical values of a given finite index in a given interval has twice the growth rate of the first moment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源