论文标题

X射线观测的虚拟望远镜的编队飞行技术

Formation Flying Techniques for the Virtual Telescope for X-Ray Observations

论文作者

Rankin, Kyle, Shah, Neerav, Krizmanic, John, Stochaj, Steven, Naseri, Asal

论文摘要

用于X射线观测的虚拟望远镜(VTXO)是一个天体物理学的小型任务,该任务正在开发,该任务旨在使用基于相位的菲涅尔(PFL)空间望远镜展示10 Milliarcsecond X射线成像。 PFL有望与当前X射线光学元件的当前状态相比,角度分辨率的几个数量级改善。但是,用于天文应用的PFL需要较长的焦距,对于VTXO,焦距估计在0.5 km至4 km的范围内。由于这些焦距在单个航天器上是不可行的,因此提出的解决方案是使用两个独立的航天器,一个具有透镜(S),第二个带有X射线摄像机。然后,这两个航天器将在近似于单个刚性望远镜的地层中飞行。为了实现此配置,两个航天器必须保持相距焦距距离,并具有厘米水平控制和次毫计级知识要求。此外,该系统必须将望远镜轴指向固定目标,延长延长持续时间。 VTXOS系统架构要求两个立方体在高度偏心的地球轨道上运行,其中一个航天器在天然的开plarian轨道上行驶。然后,第二号航天器将在观测过程中保持固定偏移的伪轨道上飞行。该系统的观察将发生在Apogee附近,在线上,航天器上的差异力量最小,进而使燃油消耗量最小。本文概述了VTXOS系统体系结构,并深入研究了编队飞行技术,包括燃料消耗和维护地层的方法。除了在X射线天文学中使用外,这些飞行技术最终应最终有助于分布式光圈望远镜的发展,并具有比当前最新技术的成像性能级数更好。

The Virtual Telescope for X-Ray Observations (VTXO) is an Astrophysics SmallSat mission being developed to demonstrate 10-milliarcsecond X-ray imaging using a Phase Fresnel Lense (PFL) based space telescope. PFLs promise to provide several orders of magnitude improvement in angular resolution over current state of the art X-ray optics. However, PFLs for astronomical applications require a long focal length, for VTXO the focal length is estimated to be in the range of 0.5 km to 4 km. Since these focal lengths are not feasible on a single spacecraft, the proposed solution is to use two separate spacecraft, one with the lense(s), and the second with an X-ray camera. These two spacecrafts will then fly in a formation approximating a single rigid telescope. In order to achieve this configuration, the two spacecraft must maintain the formation a focal length distance apart, with centimeter level control, and sub-millimeter level knowledge requirements. Additionally, the system must keep the telescope axis pointed at a fixed target on the celestial sphere for extended durations. VTXOs system architecture calls for two CubeSats to operate in a highly eccentric Earth orbit with one of the spacecrafts traveling on a natural keplarian orbit. The second spacecraft will then fly on a pseudo orbit maintaining a fixed offset during observations. Observations with this system will occur near apogee where differential forces on the spacecrafts are minimal which in turn minimizes fuel consumption. This paper overviews VTXOs system architecture, and looks in depth at the formation flying techniques, including fuel consumption, and methods maintaining the formation. Beyond its use in X-ray astronomy, these formations flying techniques should eventually contribute to the development of distributed aperture telescopes, with imaging performance orders of magnitude better than the current state of the art.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源