论文标题
范式葡萄糖胰岛素模型的延迟诱导的不确定性
Delay-Induced Uncertainty for a Paradigmatic Glucose-Insulin Model
论文作者
论文摘要
重症监护病房的医学实践是基于这样的假设,即可以预见的是人葡萄糖胰岛素系统等生理系统。我们证明,葡萄糖胰岛素系统内部的延迟会诱发持续的颞杂乱,从而使该系统无法预测。具体而言,我们为超级葡萄糖胰岛素模型表现出这种混乱。这个验证的有限维模型代表反馈延迟作为三阶段过滤器。使用平滑动力学系统的等级一级地图理论,我们精确地解释了所得延迟引起的不确定性(DIU)的性质。我们开发了一种食谱,可以用来诊断一般振荡动力学系统中的DIU。对于无限维延迟系统,不存在等级理论的类似物。然而,我们表明,通过表现出线性剪切流的持续时间混乱,我们的DIU配方中编码的几何原理适用于此类系统。我们的结果可能广泛适用,因为延迟在整个数学生理学中都是无处不在的。
Medical practice in the intensive care unit is based on the supposition that physiological systems such as the human glucose-insulin system are predictable. We demonstrate that delay within the glucose-insulin system can induce sustained temporal chaos, rendering the system unpredictable. Specifically, we exhibit such chaos for the Ultradian glucose-insulin model. This well-validated, finite-dimensional model represents feedback delay as a three-stage filter. Using the theory of rank one maps from smooth dynamical systems, we precisely explain the nature of the resulting delay-induced uncertainty (DIU). We develop a recipe one may use to diagnose DIU in a general oscillatory dynamical system. For infinite-dimensional delay systems, no analog of the theory of rank one maps exists. Nevertheless, we show that the geometric principles encoded in our DIU recipe apply to such systems by exhibiting sustained temporal chaos for a linear shear flow. Our results are potentially broadly applicable because delay is ubiquitous throughout mathematical physiology.