论文标题

捕获:基于上下文的元加强学习,用于可转让体系结构搜索

CATCH: Context-based Meta Reinforcement Learning for Transferrable Architecture Search

论文作者

Chen, Xin, Duan, Yawen, Chen, Zewei, Xu, Hang, Chen, Zihao, Liang, Xiaodan, Zhang, Tong, Li, Zhenguo

论文摘要

近年来,神经建筑搜索(NAS)取得了许多突破。尽管取得了显着的进展,但许多算法都仅限于特定的搜索空间。在面对多个任务时,他们还缺乏有效的机制来重用知识。这些挑战排除了它们的适用性,并激发了我们的Catch提案,这是一种基于上下文的元元增强学习(RL)算法,用于可转让架构搜索。元学习和RL的组合可以使捕获有效地适应新任务,同时不可知论搜索空间。 Catch利用概率编码器将任务属性编码为潜在上下文变量,然后引导Catch的控制器快速“捕获”表现最好的网络。这些上下文还有助于网络评估者过滤劣质候选者并加快学习速度。广泛的实验表明,与许多其他广泛认可的算法相比,Catch的普遍性和搜索效率。它也能够处理ImageNet,Coco和CityScapes上的竞争网络来处理跨域架构搜索。据我们所知,这是提出有效的可转移NAS解决方案的第一项工作,同时保持各种环境的鲁棒性。

Neural Architecture Search (NAS) achieved many breakthroughs in recent years. In spite of its remarkable progress, many algorithms are restricted to particular search spaces. They also lack efficient mechanisms to reuse knowledge when confronting multiple tasks. These challenges preclude their applicability, and motivate our proposal of CATCH, a novel Context-bAsed meTa reinforcement learning (RL) algorithm for transferrable arChitecture searcH. The combination of meta-learning and RL allows CATCH to efficiently adapt to new tasks while being agnostic to search spaces. CATCH utilizes a probabilistic encoder to encode task properties into latent context variables, which then guide CATCH's controller to quickly "catch" top-performing networks. The contexts also assist a network evaluator in filtering inferior candidates and speed up learning. Extensive experiments demonstrate CATCH's universality and search efficiency over many other widely-recognized algorithms. It is also capable of handling cross-domain architecture search as competitive networks on ImageNet, COCO, and Cityscapes are identified. This is the first work to our knowledge that proposes an efficient transferrable NAS solution while maintaining robustness across various settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源