论文标题

线斑的实证研究:一种新颖的过去故障算法

An empirical study of Linespots: A novel past-fault algorithm

论文作者

Scholz, Maximilian, Torkar, Richard

论文摘要

本文提出了基于Bugspots算法的新颖的过去故障预测算法线斑点。与Bugspot相比,我们分析了Lines Pots的预测性能和运行时,截至目前,使用最重要的自我构建数据集进行了经验研究,包括用于验证的高质量样本。作为断层预测的新颖性,我们使用贝叶斯数据分析并定向无环图来对效果进行建模。我们发现,对于所有七个评估指标,线柱上的线斑的预测性能始终如一。我们得出的结论是,在所有不需要实时性能的情况下,都应在错误点上使用线柱。

This paper proposes the novel past-faults fault prediction algorithm Linespots, based on the Bugspots algorithm. We analyze the predictive performance and runtime of Linespots compared to Bugspots with an empirical study using the most significant self-built dataset as of now, including high-quality samples for validation. As a novelty in fault prediction, we use Bayesian data analysis and Directed Acyclic Graphs to model the effects. We found consistent improvements in the predictive performance of Linespots over Bugspots for all seven evaluation metrics. We conclude that Linespots should be used over Bugspots in all cases where no real-time performance is necessary.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源