论文标题

通过细胞潜水平台上的细胞自动训练(CAT)自动表型

Automated Phenotyping via Cell Auto Training (CAT) on the Cell DIVE Platform

论文作者

Santamaria-Pang, Alberto, Sood, Anup, Meyer, Dan, Chowdhury, Aritra, Ginty, Fiona

论文摘要

我们提出了一种使用多重免疫荧光图像的自动训练集在组织样品中自动细胞分类的方法。该方法利用了在稳健的超复合免疫荧光平台(细胞潜水,GE Healthcare)上的单个组织截面上原位染色的多个标记物,该平台提供了多通道图像,允许在单个细胞/亚细胞水平上进行分析。细胞分类方法包括两个步骤:首先,使用标记到细胞染色信息生成每个图像的自动训练集。这种模仿病理学家将如何从图像级别的大型队列中选择样品。在第二步中,从自动化训练集推断出概率模型。概率模型捕获了相互排斥的细胞类型中的染色模式,并为数据队列构建了单个概率模型。我们已经评估了提出的分类方法:i)癌症中的免疫细胞和ii)神经系统退化性疾病组织中的脑细胞,平均精度超过95%。

We present a method for automatic cell classification in tissue samples using an automated training set from multiplexed immunofluorescence images. The method utilizes multiple markers stained in situ on a single tissue section on a robust hyperplex immunofluorescence platform (Cell DIVE, GE Healthcare) that provides multi-channel images allowing analysis at single cell/sub-cellular levels. The cell classification method consists of two steps: first, an automated training set from every image is generated using marker-to-cell staining information. This mimics how a pathologist would select samples from a very large cohort at the image level. In the second step, a probability model is inferred from the automated training set. The probabilistic model captures staining patterns in mutually exclusive cell types and builds a single probability model for the data cohort. We have evaluated the proposed approach to classify: i) immune cells in cancer and ii) brain cells in neurological degenerative diseased tissue with average accuracies above 95%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源