论文标题

在$ l $ - 模块化椭圆曲线和某些$ k3 $表面上

On $L$-Functions of Modular Elliptic Curves and Certain $K3$ Surfaces

论文作者

Amir, Malik, Hong, Letong

论文摘要

受莱默(Lehmer)对Ramanujan $τ$功能的非散步的猜想的启发,可能会问一个奇数整数$α$是否可以等于$τ(n)$或任何新形式$ f(z)$的系数。 Balakrishnan,Craig,Ono和Tsai使用Lucas序列和二芬太汀分析的理论来表征均匀重量$ k \ geq 4 $的新形式的不可接受的值。我们使用这些方法的重量$ 2 $和$ 3 $ newforms,并将我们的结果应用于模块化椭圆曲线的$ l $ - 符合条件,而Picard Number $ \ ge 19 $的某些$ k3 $表面。特别是,对于完整的重量列表,$ 3 $ newforms $f_λ(z)= \ suma_λ(n)q^n $是$η$ - 产品,对于$n_λ$,某些椭圆曲线$e_λ$的指挥\ begin {align*}a_λ(n)\ in \ in \ ,,&\ { - 5,9,\ pm 11,25,\ pm41,\ pm 43,-45,-45,\ pm47,49,\ pm53,55,\ pm53,55,\ pm59,\ pm59,\ pm59,\ pm61,pm61,\ pm 67 \ \ \ \ \ \ \ \ \&\&\ \&\&\&\&\&\&\&\&\&\&\, \ { - 69,\ pm 71,\ pm 73,75,\ pm79,\ pm81,\ pm 83,\ pm89,\ pm 93 \ pm 97,99 \}。 \ end {align*}假设有概括的riemann假设,我们可以排除其他可能性的可能性,\ begin {align*}a_λ(n)\ in \ in \ { - 5,9,\ pm 11,25,-45,49,49,55,-69,75,-69,75,-69,75,-69,75,-69,75,\ pm 81,dm pm 81,93,93,93,999999999. \ end {align*}

Inspired by Lehmer's conjecture on the nonvanishing of the Ramanujan $τ$-function, one may ask whether an odd integer $α$ can be equal to $τ(n)$ or any coefficient of a newform $f(z)$. Balakrishnan, Craig, Ono, and Tsai used the theory of Lucas sequences and Diophantine analysis to characterize non-admissible values of newforms of even weight $k\geq 4$. We use these methods for weight $2$ and $3$ newforms and apply our results to $L$-functions of modular elliptic curves and certain $K3$ surfaces with Picard number $\ge 19$. In particular, for the complete list of weight $3$ newforms $f_λ(z)=\sum a_λ(n)q^n$ that are $η$-products, and for $N_λ$ the conductor of some elliptic curve $E_λ$, we show that if $|a_λ(n)|<100$ is odd with $n>1$ and $(n,2N_λ)=1$, then \begin{align*} a_λ(n) \in \,& \{-5,9,\pm 11,25, \pm41, \pm 43, -45,\pm47,49, \pm53,55, \pm59, \pm61, \pm 67\}\\ & \,\,\, \cup \, \{-69,\pm 71, \pm 73,75, \pm79,\pm81, \pm 83, \pm89,\pm 93 \pm 97, 99\}. \end{align*} Assuming the Generalized Riemann Hypothesis, we can rule out a few more possibilities leaving \begin{align*} a_λ(n) \in \{-5,9,\pm 11,25,-45,49,55,-69,75,\pm 81,\pm 93, 99\}. \end{align*}

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源