论文标题

导体和整流器中的运输:平均场红场方程和非平衡绿色功能

Transport in Conductors and Rectifiers: Mean-Field Redfield Equations and Non-Equilibrium Green's Functions

论文作者

Zhuang, Zekun, Merino, Jaime, Marston, J. B.

论文摘要

我们通过使用Redfield Master方程与平均场近似值结合使用的量子系统的一个粒子密度矩阵来得出一个量子系统的一个粒子密度矩阵的封闭方程。可以通过扰动理论在分析上发现稳态解决方案。该方法在一维非相互作用的量子线上的应用可产生电流的表达,从而再现了著名的Landauer公式。对于介于三维半导体P-N连接的情况,发现非线性整流。结果与使用非平衡绿色功能获得的数值模拟非常吻合,这支持了红场方程的有效性来描述运输的描述。

We derive a closed equation of motion for the one particle density matrix of a quantum system coupled to multiple baths using the Redfield master equation combined with a mean-field approximation. The steady-state solution may be found analytically with perturbation theory. Application of the method to a one-dimensional non-interacting quantum wire yields an expression for the current that reproduces the celebrated Landauer's formula. Nonlinear rectification is found for the case of a mesoscopic three-dimensional semiconductor p-n junction. The results are in good agreement with numerical simulations obtained using non-equilibrium Green's functions, supporting the validity of the Redfield equations for the description of transport.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源