论文标题

ALE指标的lojasiewicz不平等

A Łojasiewicz inequality for ALE metrics

论文作者

Deruelle, Alix, Ozuch, Tristan

论文摘要

我们引入了一个新的功能,灵感来自Perelman的$λ$功能功能,该功能适用​​于渐近的本地欧几里得(ALE)设置,并表示$λ_ {\ permatatorName {ale}} $。它的表达式包括一个边界项,该术语被证明是ADM质量。我们证明$λ_{\ permatatorName {ale}} $是在Ricci-flat Ale ALE指标的方便社区上定义和分析的,我们表明它沿RICCI流是单调的。例如,这使我们确定具有非负标态曲率的可集成和稳定的Ricci-flat ALE指标的小扰动具有非负质量。然后,我们引入了一条通用的证据方案,以在非compact歧管上的lojasiewicz-simon不等式,并证明它适用于RICCI-FLAT围绕RICCI-FLAT指标的$λ_ {\ propatatorName {ale}} $。此外,我们为具有可集成的RICCI-FLAT变形的指标获得了最佳加权Lojasiewicz指数。

We introduce a new functional inspired by Perelman's $λ$-functional adapted to the asymptotically locally Euclidean (ALE) setting and denoted $λ_{\operatorname{ALE}}$. Its expression includes a boundary term which turns out to be the ADM-mass. We prove that $λ_{\operatorname{ALE}}$ is defined and analytic on convenient neighborhoods of Ricci-flat ALE metrics and we show that it is monotonic along the Ricci flow. This for example lets us establish that small perturbations of integrable and stable Ricci-flat ALE metrics with nonnegative scalar curvature have nonnegative mass. We then introduce a general scheme of proof for a Lojasiewicz-Simon inequality on non-compact manifolds and prove that it applies to $λ_{\operatorname{ALE}}$ around Ricci-flat metrics. We moreover obtain an optimal weighted Lojasiewicz exponent for metrics with integrable Ricci-flat deformations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源