论文标题

通过增强学习可解释的控制

Interpretable Control by Reinforcement Learning

论文作者

Hein, Daniel, Limmer, Steffen, Runkler, Thomas A.

论文摘要

在本文中,最近引入的三种加强学习(RL)方法用于为Cart-Pole平衡基准制定人解剖政策。新型的RL方法以紧凑的模糊控制器和简单代数方程的形式学习人类干扰策略。将表示和所实现的控制性能与两种经典控制器设计方法和三种非解剖RL方法进行比较。所有八种方法均利用相同的先前生成的数据批次并离线产生控制器 - 而无需与实际基准动态相互作用。实验表明,新型的RL方法能够自动产生良好的策略,同时是人类解剖的。此外,其中一种方法用于自动学习基于方程式的策略,仅使用人类游戏机生成的批处理数据来自动学习基于方程式的策略。第一次尝试中生成的解决方案已经代表了成功的平衡策略,该策略证明了对现实世界问题的适用性。

In this paper, three recently introduced reinforcement learning (RL) methods are used to generate human-interpretable policies for the cart-pole balancing benchmark. The novel RL methods learn human-interpretable policies in the form of compact fuzzy controllers and simple algebraic equations. The representations as well as the achieved control performances are compared with two classical controller design methods and three non-interpretable RL methods. All eight methods utilize the same previously generated data batch and produce their controller offline - without interaction with the real benchmark dynamics. The experiments show that the novel RL methods are able to automatically generate well-performing policies which are at the same time human-interpretable. Furthermore, one of the methods is applied to automatically learn an equation-based policy for a hardware cart-pole demonstrator by using only human-player-generated batch data. The solution generated in the first attempt already represents a successful balancing policy, which demonstrates the methods applicability to real-world problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源