论文标题
贝叶斯优化面部刺激的自动设计
Bayesian optimization for automatic design of face stimuli
论文作者
论文摘要
研究面部处理涉及的认知和神经机制是现代神经科学和心理学中的一项基本任务。迄今为止,大多数此类研究都集中在使用预选刺激上。没有个性化的刺激却是一个严重的局限性,因为它无法说明每个单个面部处理系统如何调整为文化嵌入或如何在疾病中破坏它。在这项工作中,我们提出了一个新颖的框架,该框架将生成性对抗网络(GAN)与贝叶斯优化结合在一起,以确定许多不同面部的个人反应模式。正式地,我们采用贝叶斯优化来有效地搜索最先进的GAN模型的潜在空间,以自动产生新的面孔,以最大程度地提高个人受试者的响应。我们介绍了基于Web的原理学研究的结果,参与者对通过在GAN的潜在空间上进行贝叶斯优化产生的自身图像进行了评分。我们展示了该算法如何在面部的不同语义转换中绘制出响应的同时如何有效地定位个人的最佳面孔;个体间的分析表明,该方法如何提供有关面部处理中个体差异的丰富信息。
Investigating the cognitive and neural mechanisms involved with face processing is a fundamental task in modern neuroscience and psychology. To date, the majority of such studies have focused on the use of pre-selected stimuli. The absence of personalized stimuli presents a serious limitation as it fails to account for how each individual face processing system is tuned to cultural embeddings or how it is disrupted in disease. In this work, we propose a novel framework which combines generative adversarial networks (GANs) with Bayesian optimization to identify individual response patterns to many different faces. Formally, we employ Bayesian optimization to efficiently search the latent space of state-of-the-art GAN models, with the aim to automatically generate novel faces, to maximize an individual subject's response. We present results from a web-based proof-of-principle study, where participants rated images of themselves generated via performing Bayesian optimization over the latent space of a GAN. We show how the algorithm can efficiently locate an individual's optimal face while mapping out their response across different semantic transformations of a face; inter-individual analyses suggest how the approach can provide rich information about individual differences in face processing.