论文标题

拓扑混合子班的千古化准不变措施是同构与伯努利偏移

Ergodic quasi-invariant measures on topologically mixing subshifts are isomorphic to Bernoulli shifts

论文作者

Hamdan, Doureid

论文摘要

我们证明,在有限数量的坐标数量的排列下,拓扑混合子换档上的移位段落度量与伯努利移位是同构的。我们还证明,吉布斯在拓扑混合有限类型的子迁移时是准不变的。

We prove that a shift ergodic measure on a topologically mixing sub-shift is isomorphic to a Bernoulli shift whenever it is quasi invariant under permutations of finite number of coordinates. We prove also that Gibbs measures on topologically mixing subshift of finite type are quasi invariant.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源