论文标题
嵌套混合圆柱阵列设计和大规模物联网网络的DOA估计
Nested Hybrid Cylindrical Array Design and DoA Estimation for Massive IoT Networks
论文作者
论文摘要
在保持高网络访问能力的同时,降低成本和功耗是大规模物联网(MIOT)网络的关键物理层要求。部署混合阵列是满足要求的成本和节能方式,但会惩罚系统的自由度(DOF)和渠道估计精度。这是因为来自多个天线的信号由混合阵列的射频(RF)网络组合。本文提出了一种用于Miot网络的新型杂化圆形圆柱阵列(UCYA)。我们基于稀疏阵列技术设计了嵌套的混合横梁形成结构,并根据二阶信道统计提出了相应的通道估计方法。结果,仅需要少量的RF链来保留UCYA的DOF。我们还提出了一种新的基于张量的二维(2-D)到达方向(DOA)估计算法,该算法是针对所提出的杂种阵列量身定制的。该算法抑制了所有张量模式中的噪声组件,并直接在信号数据模型上运行,因此可以通过负担得起的计算复杂性提高估计精度。通过CRAMER-RAO下限(CRLB)分析证实,模拟结果表明,拟议的混合型UCYA阵列和DOA估计算法可以准确估计大量IoT设备的2-D DOA。
Reducing cost and power consumption while maintaining high network access capability is a key physical-layer requirement of massive Internet of Things (mIoT) networks. Deploying a hybrid array is a cost- and energy-efficient way to meet the requirement, but would penalize system degree of freedom (DoF) and channel estimation accuracy. This is because signals from multiple antennas are combined by a radio frequency (RF) network of the hybrid array. This paper presents a novel hybrid uniform circular cylindrical array (UCyA) for mIoT networks. We design a nested hybrid beamforming structure based on sparse array techniques and propose the corresponding channel estimation method based on the second-order channel statistics. As a result, only a small number of RF chains are required to preserve the DoF of the UCyA. We also propose a new tensor-based two-dimensional (2-D) direction-of-arrival (DoA) estimation algorithm tailored for the proposed hybrid array. The algorithm suppresses the noise components in all tensor modes and operates on the signal data model directly, hence improving estimation accuracy with an affordable computational complexity. Corroborated by a Cramer-Rao lower bound (CRLB) analysis, simulation results show that the proposed hybrid UCyA array and the DoA estimation algorithm can accurately estimate the 2-D DoAs of a large number of IoT devices.