论文标题
Nakayama的自动形态级的矿石扩展,可koszul artin-schelter常规代数
Nakayama automorphisms of graded Ore extensions of Koszul Artin-Schelter regular algebras
论文作者
论文摘要
让$ a $是koszul artin-schelter常规代数,$σ$ a级的$ a $ a $ a $ a $ a $ a $σ$ derivation $ a $ a $ a $ a $。我们引入了$δ$的不变性,称为$σ$ -Divergence $δ$。我们使用$σ$ -Divergence $Δ$明确地描述了分级矿石扩展的Nakayama自动形态,并构建了$ B $的扭曲的superpotential $ \hatΩ$,以实现$ b $的扭曲superpotential $ \hatΩ$,以便它是$ \ hatpion $ \ athge $ \ hat的衍生品Quitient Quitient Quitient Quitient Quitient Quitigation $ b $。我们还确定了Noetherian Artin-Schelter定期代数2的所有分级矿石扩展,并计算其Nakayama汽车。
Let $A$ be a Koszul Artin-Schelter regular algebra, $σ$ a graded automorphism of $A$ and $δ$ a degree-one $σ$-derivation of $A$. We introduce an invariant for $δ$ called the $σ$-divergence of $δ$. We describe the Nakayama automorphism of the graded Ore extension $B=A[z;σ,δ]$ explicitly using the $σ$-divergence of $δ$, and construct a twisted superpotential $\hatω$ for $B$ so that it is a derivation quotient algebra defined by $\hatω$. We also determine all graded Ore extensions of noetherian Artin-Schelter regular algebras of dimension 2 and compute their Nakayama automorphisms.