论文标题

实时量子演化的底部抑制和椭圆流

Bottomonium suppression and elliptic flow from real-time quantum evolution

论文作者

Islam, Ajaharul, Strickland, Michael

论文摘要

我们使用实时溶液对Schrödinger方程的实时解决方案计算底部底池的抑制和椭圆流,具有现实的中等体内复合物值。为了建模初始产量,我们假设在重夸克质量的极限中,可以通过晶格缝(高斯)狄拉克(Gaussian)狄拉克(Gaussian)Dirac Delta波功能来描述波功能。最终的最终量子力学重叠提供了所有底元特征态的生存概率。我们的结果与$ r_ {aa} $的可用数据非常吻合,作为$ n _ {\ rm part} $的函数,在$ \ sqrt {s _ {\ rm nn}}} = $ 5.02 tev处收集的$ p_t $。在各个州的$ v_2 $的情况下,我们发现$υ(1s)$抑制的路径长度依赖性导致$υ(1s)$的$ V_2 $相当小。我们对$ 10 { - } 90 $%中心级的$υ(1s)$的集成椭圆流的预测为$ v_2 [υ(1s)] = 0.0026 \ pm 0.0007 $。我们还发现,由于它们增加了抑制作用,激发的底池状态具有较大的椭圆流,并且我们对$ v_2 [υ(2s)] $和$ v_2 [υ(3S)] $进行预测,作为中心和横向动量的函数。与先前的研究类似,我们发现底部元态在低横向动量下可能具有负$ v_2 $。

We compute the suppression and elliptic flow of bottomonium using real-time solutions to the Schrödinger equation with a realistic in-medium complex-valued potential. To model the initial production, we assume that, in the limit of heavy quark masses, the wave-function can be described by a lattice-smeared (Gaussian) Dirac delta wave-function. The resulting final-state quantum-mechanical overlaps provide the survival probability of all bottomonium eigenstates. Our results are in good agreement with available data for $R_{AA}$ as a function of $N_{\rm part}$ and $p_T$ collected at $\sqrt{s_{\rm NN}} =$ 5.02 TeV. In the case of $v_2$ for the various states, we find that the path-length dependence of $Υ(1s)$ suppression results in quite small $v_2$ for $Υ(1s)$. Our prediction for the integrated elliptic flow for $Υ(1s)$ in the $10{-}90$% centrality class is $v_2[Υ(1s)] = 0.0026 \pm 0.0007$. We additionally find that, due to their increased suppression, excited bottomonium states have a larger elliptic flow and we make predictions for $v_2[Υ(2s)]$ and $v_2[Υ(3s)]$ as a function of centrality and transverse momentum. Similar to prior studies, we find that it is possible for bottomonium states to have negative $v_2$ at low transverse momentum.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源