论文标题

建模QCD临界点附近临界波动的扩散动力学

Modeling the diffusive dynamics of critical fluctuations near the QCD critical point

论文作者

Nahrgang, Marlene, Bluhm, Marcus

论文摘要

通过相对论重离子碰撞对QCD临界点进行实验性搜索需要开发动力学波动模型。在这项工作中,我们研究了临界点附近的净 - 巴里昂密度的波动。由于净 - 巴里昂的数量保护,正确的动力学由流体动力学扩散方程式给出,我们以白噪声随机项扩展到包含固有波动。我们通过将我们的数值结果与结构因子的分析期望和相等相关函数进行比较来量化有限分辨率和有限尺寸效应。在小型系统中,净 - 巴里昂的数量保护事实在定量上很重要,因为它在较大的距离上引入了反相关。包括以金茨堡 - 兰道自由能函数形式的非线性耦合项,我们观察到通过过量的峰度量化的非高斯波动。我们研究系统接近平衡的动力学特性,以使温度突然淬灭和类似哈勃的温度演化。在实时动力学系统中,我们发现临界减速,极值削弱和波动信号的迟缓的重要动力学效果。在这项工作中,我们建立了一组通用测试,应通过任何传播波动的模型来满足这些测试,包括即将到来的$ 3+1 $尺寸波动的流体动力学。

The experimental search for the QCD critical point by means of relativistic heavy-ion collisions necessitates the development of dynamical models of fluctuations. In this work we study the fluctuations of the net-baryon density near the critical point. Due to net-baryon number conservation the correct dynamics is given by the fluid dynamical diffusion equation, which we extend by a white noise stochastic term to include intrinsic fluctuations. We quantify finite resolution and finite size effects by comparing our numerical results to analytic expectations for the structure factor and the equal-time correlation function. In small systems the net-baryon number conservation turns out to be quantitatively and qualitatively important, as it introduces anticorrelations at larger distances. Including nonlinear coupling terms in the form of a Ginzburg-Landau free energy functional we observe non-Gaussian fluctuations quantified by the excess kurtosis. We study the dynamical properties of the system close to equilibrium, for a sudden quench in temperature and a Hubble-like temperature evolution. In the real-time dynamical systems we find the important dynamical effects of critical slowing down, weakening of the extremal value and retardation of the fluctuation signal. In this work we establish a set of general tests, which should be met by any model propagating fluctuations, including upcoming $3+1$ dimensional fluctuating fluid dynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源