论文标题

通过指标相似性学习的最佳运输域概括

Domain Generalization via Optimal Transport with Metric Similarity Learning

论文作者

Zhou, Fan, Jiang, Zhuqing, Shui, Changjian, Wang, Boyu, Chaib-draa, Brahim

论文摘要

将知识概括为无法看到的数据和标签是不可用的,对于机器学习模型至关重要。我们解决了域的概括问题,以从多个源域学习并推广到具有未知统计数据的目标域。关键的想法是在所有域中提取根本的不变特征。以前的域概括方法主要集中于学习不变特征,并从每个源域中堆叠学习的特征,以概括为新的目标域,同时忽略标签信息,这将导致具有模棱两可的分类边界的无法区分的特征。为此,一种可能的解决方案是在提取不变特征时约束标签相似性,并利用标签相似性,以实现特定类别的内聚会和跨域特征的分离。因此,我们使用Wasserstein距离采用最佳运输,这可能会限制类标签的相似性,以进行对抗训练,并进一步部署度量学习目标,以利用标签信息来实现可区分的分类边界。经验结果表明,我们提出的方法可以胜过大多数基线。此外,消融研究还证明了我们方法的每个组成部分的有效性。

Generalizing knowledge to unseen domains, where data and labels are unavailable, is crucial for machine learning models. We tackle the domain generalization problem to learn from multiple source domains and generalize to a target domain with unknown statistics. The crucial idea is to extract the underlying invariant features across all the domains. Previous domain generalization approaches mainly focused on learning invariant features and stacking the learned features from each source domain to generalize to a new target domain while ignoring the label information, which will lead to indistinguishable features with an ambiguous classification boundary. For this, one possible solution is to constrain the label-similarity when extracting the invariant features and to take advantage of the label similarities for class-specific cohesion and separation of features across domains. Therefore we adopt optimal transport with Wasserstein distance, which could constrain the class label similarity, for adversarial training and also further deploy a metric learning objective to leverage the label information for achieving distinguishable classification boundary. Empirical results show that our proposed method could outperform most of the baselines. Furthermore, ablation studies also demonstrate the effectiveness of each component of our method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源