论文标题
学会构成视觉对应的超柱
Learning to Compose Hypercolumns for Visual Correspondence
论文作者
论文摘要
特征表示在视觉对应关系中起着至关重要的作用,并且最新的图像匹配方法与深堆积的卷积层相匹配。但是,这些模型通常是单片和静态的,因为它们通常使用特定的特征级别,例如最后一层的输出,并且无论图像匹配如何,都粘附在其上。在这项工作中,我们介绍了一种新颖的视觉对应方法,该方法通过利用在图像上的相关图层来动态构成有效特征。受到分类中的多层特征组成和自适应推理体系结构的启发,提出的方法称为动态超像素流,学会通过从深度卷积神经网络中选择少量相关层来即时构成超柱特征。我们证明了语义对应任务的有效性,即建立描述同一对象或场景类别不同实例的图像之间的对应关系。标准基准测试的实验表明,所提出的方法以自适应和有效的方式大大提高了最新技术的匹配性能。
Feature representation plays a crucial role in visual correspondence, and recent methods for image matching resort to deeply stacked convolutional layers. These models, however, are both monolithic and static in the sense that they typically use a specific level of features, e.g., the output of the last layer, and adhere to it regardless of the images to match. In this work, we introduce a novel approach to visual correspondence that dynamically composes effective features by leveraging relevant layers conditioned on the images to match. Inspired by both multi-layer feature composition in object detection and adaptive inference architectures in classification, the proposed method, dubbed Dynamic Hyperpixel Flow, learns to compose hypercolumn features on the fly by selecting a small number of relevant layers from a deep convolutional neural network. We demonstrate the effectiveness on the task of semantic correspondence, i.e., establishing correspondences between images depicting different instances of the same object or scene category. Experiments on standard benchmarks show that the proposed method greatly improves matching performance over the state of the art in an adaptive and efficient manner.