论文标题
驱动耗散系统中的极限循环阶段和金石模式
Limit Cycle Phase and Goldstone Mode in Driven Dissipative Systems
论文作者
论文摘要
在本文中,我们从理论上研究了具有哈驼相互作用的三模腔的一阶量子耗散相变。在这两种类型中,都有一个平均场限制循环阶段,其中局部U(1)对称性和Liouvillian超级操纵器的时间翻译对称(TTS)自发损坏(SSB)。这SSB通过在空腔输出处的无条件和完全挤压状态的外观(连接到众所周知的戈德石模式)表现出来。通过使用Wigner函数形式主义,因此正确地包括量子噪声,我们表明,远离热力学极限并在量子状态下,波动显着限制了由于相扩散而导致的戈德石模式的相干时间。我们的理论预测表明,相互作用的多模光子系统是丰富的多功能测试床,用于研究平均场景图和量子相变之间的交叉。一个可以在包括超导电路,半导体微腔,原子Rydberg Polaritons和Cuprite激子在内的各种平台中进行研究的问题。
In this article, we theoretically investigate the first- and second-order quantum dissipative phase transitions of a three-mode cavity with a Hubbard interaction. In both types, there is a mean-field limit cycle phase where the local U(1)symmetry and the time-translational symmetry (TTS) of the Liouvillian super-operator are spontaneously broken (SSB). This SSB manifests itself through the appearance of an unconditionally and fully squeezed state at the cavity output, connected to the well-known Goldstone mode. By employing the Wigner function formalism hence, properly including the quantum noise, we show that away from the thermodynamic limit and within the quantum regime, fluctuations notably limit the coherence time of the Goldstone mode due to the phase diffusion. Our theoretical predictions suggest that interacting multimode photonic systems are rich, versatile testbeds for investigating the crossovers between the mean-field picture and quantum phase transitions. A problem that can be investigated in various platforms including superconducting circuits, semiconductor microcavities, atomic Rydberg polaritons, and cuprite excitons.