论文标题

对角组的几何形状

The geometry of diagonal groups

论文作者

Bailey, R. A., Cameron, Peter J., Praeger, Cheryl E., Schneider, Csaba

论文摘要

对角线组是在O'Nan-Scott定理结论中出现的有限原始置换群组之一。其他几个类别被描述为几何或组合结构(例如仿射空间或笛卡尔分解)的自动形态群,但是尚未研究对角线组的这种结构。 本文的主要目的是描述和表征这些结构,我们称之为对角线半纹。与O'Nan-Scott Theorem中的对角线群(根据有限的简单组定义)不同,我们的构造在任何群体,有限或无限的群体上都起作用。 对角线半层次取决于尺寸M和一个组T。对于m = 2,它是拉丁正方形,t的cayley表,尽管实际上任何拉丁平方都可以满足我们的公理。但是,对于m> = 3,t组自然而然地从公理中出现。 (这种情况有些类似于投影的几何形状,其中投影平面存在于大量中,但较高维度结构是由代数对象(一个分区环)协调的。) 一组的分区晶格中包含对角线半层次,我们对分区的演算进行了介绍。许多概念和结构都来自统计中的实验设计。 我们还确定对角群何时可能是原始的,也可以是准二元组(这些条件对于对角线组是等效的)。 与对角线半层次相关的是一个图形图,该图具有相同的自动形态组,除了在四个小病例中,M <= 3。对角线的类别包括一些著名的家庭,拉丁方形图和折叠立方体。我们在对角线图的色数上获得了部分结果,并提到了同步的应用。

Diagonal groups are one of the classes of finite primitive permutation groups occurring in the conclusion of the O'Nan-Scott theorem. Several of the other classes have been described as the automorphism groups of geometric or combinatorial structures such as affine spaces or Cartesian decompositions, but such structures for diagonal groups have not been studied. The main purpose of this paper is to describe and characterise such structures, which we call diagonal semilattices. Unlike the diagonal groups in the O'Nan-Scott theorem, which are defined over finite characteristically simple groups, our construction works over any group, finite or infinite. A diagonal semilattice depends on a dimension m and a group T. For m=2, it is a Latin square, the Cayley table of T, though in fact any Latin square satisfies our axioms. However, for m>=3, the group T emerges naturally and uniquely from the axioms. (The situation somewhat resembles projective geometry, where projective planes exist in profusion but higher-dimensional structures are coordinatised by an algebraic object, a division ring.) A diagonal semilattice is contained in the partition lattice on a set, and we provide an introduction to the calculus of partitions. Many of the concepts and constructions come from experimental design in statistics. We also determine when a diagonal group can be primitive, or quasiprimitive (these conditions are equivalent for diagonal groups). Associated with the diagonal semilattice is a graph, the diagonal graph, which has the same automorphism group except in four small cases with m<=3. The class of diagonal graphs includes some well-known families, Latin-square graphs and folded cubes. We obtain partial results on the chromatic number of a diagonal graph, and mention an application to synchronization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源