论文标题

OCCAMNET:符号回归的快速神经模型

OccamNet: A Fast Neural Model for Symbolic Regression at Scale

论文作者

Dugan, Owen, Dangovski, Rumen, Costa, Allan, Kim, Samuel, Goyal, Pawan, Jacobson, Joseph, Soljačić, Marin

论文摘要

神经网络的表现力是以复杂的黑盒模型为代价的,这些模型通常在训练数据集的领域外推断出较差,与寻找紧凑的分析表达式以描述科学数据的目的相抵触。我们介绍了OCCAMNET,这是一种神经网络模型,发现与occam的剃须刀发现可解释,紧凑和稀疏的符号拟合。我们的模型定义了通过有效采样和功能评估的功能上的概率分布。我们通过采样功能进行训练,并使概率质量偏向更好的拟合溶液,从而在增强学习损失中使用跨凝结匹配进行反向传播。 OCCAMNET可以识别各种问题的符号拟合,包括分析和非分析功能,隐式函数以及简单的图像分类,并且可以超越现实世界回归数据集上的最先进的符号回归方法。我们的方法需要最小的内存足迹,在单个CPU上以几分钟的时间拟合复杂的功能,并在GPU上缩放。

Neural networks' expressiveness comes at the cost of complex, black-box models that often extrapolate poorly beyond the domain of the training dataset, conflicting with the goal of finding compact analytic expressions to describe scientific data. We introduce OccamNet, a neural network model that finds interpretable, compact, and sparse symbolic fits to data, à la Occam's razor. Our model defines a probability distribution over functions with efficient sampling and function evaluation. We train by sampling functions and biasing the probability mass toward better fitting solutions, backpropagating using cross-entropy matching in a reinforcement-learning loss. OccamNet can identify symbolic fits for a variety of problems, including analytic and non-analytic functions, implicit functions, and simple image classification, and can outperform state-of-the-art symbolic regression methods on real-world regression datasets. Our method requires a minimal memory footprint, fits complicated functions in minutes on a single CPU, and scales on a GPU.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源