论文标题
对差分 - 代数电力系统模型的关键清除时间灵敏度
Critical Clearing Time Sensitivity for Differential-Algebraic Power System Model
论文作者
论文摘要
标准功率系统是使用微分 - 代数方程(DAE)建模的。瞬态事件后,可以作为瞬态载荷解决方案的分叉发生电压塌陷,该瞬态载荷解的标志是在丢失电压因果关系的状态空间中到达奇异表面的标记。如果系统处于这种风险之下,则需要采取预防控制决策,例如AVR设定点的变化,以增强稳定性。在这方面,关键清除时间(CCT)对可控系统参数的敏感性的了解可能有很大的帮助。 DAE系统的稳定性边界比ODE系统更为复杂,在这些系统中,除了稳定的平衡点(UEP)和周期性轨道的稳定流形外,单数表面起着重要作用。在目前的工作中,我们使用轨迹灵敏度在功率系统瞬态稳定性分析(TSA)和预防控制方面应用了通用DAE模型的CCT灵敏度表达式。为多个测试系统说明了结果,然后根据计算密集的时间域模拟(TDS)进行验证。
Standard power systems are modeled using differential-algebraic equations (DAE). Following a transient event, voltage collapse can occur as a bifurcation of the transient load flow solutions which is marked by the system trajectory reaching a singular surface in state space where the voltage causality is lost. If the system is under such a risk, preventive control decisions such as changes in AVR setpoints need to be taken to enhance the stability. In this regard, the knowledge of sensitivity of critical clearing time (CCT) to controllable system parameters can be of great help. The stability boundary of DAE systems is more complicated than ODE systems where in addition to stable manifolds of unstable equilibrium points (UEP) and periodic orbits, singular surfaces play an important role. In the present work, we derive the expressions for CCT sensitivity for a generic DAE model using trajectory sensitivities with applications to power system transient stability analysis (TSA) and preventive control. The results are illustrated for multiple test systems which are then validated against computationally intensive time-domain simulations (TDS).