论文标题

加速孤子

Accelerating Solitons

论文作者

Melnikov, Ilarion V., Papageorgakis, Constantinos, Royston, Andrew B.

论文摘要

我们将二维线性Sigma模型中量子扭结有效的哈密顿量的鞍点近似与时间衍生膨胀中的所有顺序相关。我们展示了如何使用有效的哈密顿量来获得半经典的孤子形式,有效在孤子质量的命令转移时有效。但是,明确的结果是在找到针对新波动的部分微分方程的明确解决方案的铰链,其依赖时间速度和取决于解决方案的强迫项。在小动量转移的极限中,有效的哈密顿量降低至预期形式,即h =(p^2 + m^2)^(1/2),其中m是单环校正的孤子质量,孤子形式是按照相应经典剖面的傅立叶变换给出的。

We present the saddle-point approximation for the effective Hamiltonian of the quantum kink in two-dimensional linear sigma models to all orders in the time-derivative expansion. We show how the effective Hamiltonian can be used to obtain semiclassical soliton form factors, valid at momentum transfers of order the soliton mass. Explicit results, however, hinge on finding an explicit solution to a new wave-like partial differential equation, with a time-dependent velocity and a forcing term that depend on the solution. In the limit of small momentum transfer, the effective Hamiltonian reduces to the expected form, namely H = (P^2 + M^2)^(1/2), where M is the one-loop corrected soliton mass, and soliton form factors are given in terms of Fourier transforms of the corresponding classical profiles.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源