论文标题
Roger-Yang广义绞线代数的演示
Presentations of the Roger-Yang generalized skein algebra
论文作者
论文摘要
我们介绍了罗杰·杨(Roger-Yang)广义绞线代数的演示,该代数为刺穿球体,并有任意数量的穿刺。这个绞线代数是对装饰的Teichmuller空间的量化,并概括了Kauffman支架绞线代数的构建。在本文中,我们还从基因理论方面获得了平面法司的均匀坐标环的新解释。
We describe presentations of the Roger-Yang generalized skein algebras for punctured spheres with an arbitrary number of punctures. This skein algebra is a quantization of the decorated Teichmuller space and generalizes the construction of the Kauffman bracket skein algebra. In this paper, we also obtain a new interpretation of the homogeneous coordinate ring of the Grassmannian of planes in terms of skein theory.