论文标题

虚拟理性的贝蒂数字数量

Virtual rational Betti numbers of nilpotent-by-abelian groups

论文作者

Mirzaii, Behrooz, Mokari, Fatemeh Yeganeh

论文摘要

在本文中,我们研究了虚拟的betti数字数量的nilpotent-by-abelian $ g $,其中abelianization $ n/n'$的nilpotent part $ n $ $ n $可满足某些驯服财产。更准确地说,我们证明,如果$ n/n'$是$ 2(c(n-1)-1)$ - tame tame as a $ g/n $ module,$ c $ nilpotency类$ n $,则$ \ mathrm {vb} _j(g):= \ sup_ {m \ in \ Mathcal {a} _g} \ dim_ \ dim_ \ dimbb {q} h_j(m,\ mathbb {q})$是所有$ 0 \ leq j \ leq leq n $ a $ n $ qu \ n $ n $ n $ qu \ n $ n $ s n $ qu \ n $ n $ n $ n $ $ g $的有限指数子组。

In this paper we study virtual rational Betti numbers of a nilpotent-by-abelian group $G$, where the abelianization $N/N'$ of its nilpotent part $N$ satisfies certain tameness property. More precisely, we prove that if $N/N'$ is $2(c(n-1)-1)$-tame as a $G/N$-module, $c$ the nilpotency class of $N$, then $\mathrm{vb}_j(G):=\sup_{M\in\mathcal{A}_G}\dim_\mathbb{Q} H_j(M,\mathbb{Q})$ is finite for all $0\leq j\leq n$, where $\mathcal{A}_G$ is the set of all finite index subgroups of $G$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源