论文标题

五维SCFT,拓扑字符串和Q-Painlevé方程的BPS颤动

BPS quivers of five-dimensional SCFTs, Topological Strings and q-Painlevé equations

论文作者

Bonelli, Giulio, Del Monte, Fabrizio, Tanzini, Alessandro

论文摘要

我们研究了BPS颤动的对称组对Calabi-yau几何形状产生的离散流,这些几何形式描述了一个圆上的五个维度超符号量子场理论。这些流量自然描述了此类理论的BPS粒子谱,同时产生了Q-差异类型的双线性方程,在等级的情况下为Q-Painlevé方程。这些方程式的解决方案被证明是由大规范拓扑弦分区函数给出的,我们用与箭袋相关的群集代数的$τ$ functions识别。我们在此对应于五个维度$ su(2)$ pure Super Yang-mills和$ n_f = 2 $的情况下的构造例子。

We study the discrete flows generated by the symmetry group of the BPS quivers for Calabi-Yau geometries describing five dimensional superconformal quantum field theories on a circle. These flows naturally describe the BPS particle spectrum of such theories and at the same time generate bilinear equations of q-difference type which, in the rank one case, are q-Painlevé equations. The solutions of these equations are shown to be given by grand canonical topological string partition functions which we identify with $τ$-functions of the cluster algebra associated to the quiver. We exemplify our construction in the case corresponding to five dimensional $SU(2)$ pure Super Yang-Mills and $N_f = 2$ on a circle.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源