论文标题
学习用于直观机器人控制的用户优先映射
Learning User-Preferred Mappings for Intuitive Robot Control
论文作者
论文摘要
当人类控制无人机,汽车和机器人时,我们经常对我们的投入应如何使系统行为的先入为主。现有的远程操作方法通常采用一种千篇一律的方法,在该方法中,设计人员预先定义了人类输入和机器人动作之间的映射,并且每个用户都必须适应此映射的重复交互。取而代之的是,我们提出了一种个性化方法,以从一些机器人查询中学习人类的首选或先入为主的映射。给定机器人控制器,我们确定了一个对齐模型,该模型会改变人类的输入,使控制器的输出与他们的期望匹配。我们通过认识到人类映射具有强大的先验来使这种方法有效:我们期望输入空间成比例,可逆和一致。合并这些先验可确保机器人从几个示例中学习直观的映射。我们在受辅助设置启发的机器人操纵任务中测试我们的学习方法,在该任务中,每个用户都有不同的个人偏好和物理能力来远程操作机器人组。我们的模拟和实验结果表明,与手动定义的对齐方式或学习的不直观先验相比,学习输入和机器人动作之间的映射可以提高客观和主观性能。可以在以下位置找到显示这些用户研究的补充视频:https://youtu.be/rkhka0_48-q。
When humans control drones, cars, and robots, we often have some preconceived notion of how our inputs should make the system behave. Existing approaches to teleoperation typically assume a one-size-fits-all approach, where the designers pre-define a mapping between human inputs and robot actions, and every user must adapt to this mapping over repeated interactions. Instead, we propose a personalized method for learning the human's preferred or preconceived mapping from a few robot queries. Given a robot controller, we identify an alignment model that transforms the human's inputs so that the controller's output matches their expectations. We make this approach data-efficient by recognizing that human mappings have strong priors: we expect the input space to be proportional, reversable, and consistent. Incorporating these priors ensures that the robot learns an intuitive mapping from few examples. We test our learning approach in robot manipulation tasks inspired by assistive settings, where each user has different personal preferences and physical capabilities for teleoperating the robot arm. Our simulated and experimental results suggest that learning the mapping between inputs and robot actions improves objective and subjective performance when compared to manually defined alignments or learned alignments without intuitive priors. The supplementary video showing these user studies can be found at: https://youtu.be/rKHka0_48-Q.