论文标题

经典光的瑞利 - 吉恩斯凝结:观察和热力学表征

Rayleigh-Jeans condensation of classical light : Observation and thermodynamic characterization

论文作者

Baudin, K., Fusaro, A., Krupa, K., Garnier, J., Rica, S., Millot, G., Picozzi, A.

论文摘要

关于波湍流的理论研究预测,纯粹的随机波的经典系统可以与量子Bose-Einstein凝结相类似地表现出凝结的过程。我们报告了向多模纤维中传播的经典光波凝结的过渡,即在没有热热浴的保守的哈密顿系统中传播的经典光波。与传统的自组织过程相反,非平衡形成非线性相干结构(孤子,涡旋...),这里的自组织起源于经典波的平衡雷利·吉恩斯统计。实验结果表明,化学电位在凝结过渡时达到了最低的能级,这导致光纤基本模式的宏观种群。整个凝结过渡的冷凝水部分的近场和远场测量与雷利 - 吉恩斯理论的定量一致。经典波凝结的热力学表明,在与量子玻色的凝结相反的情况下,热容量在冷凝状态下具有恒定值,并且在正常状态下倾向于消失以上。我们的实验提供了一种相干的自组织现象,该现象仅由经典光波的统计平衡特性驱动。

Theoretical studies on wave turbulence predict that a purely classical system of random waves can exhibit a process of condensation, in analogy with the quantum Bose-Einstein condensation. We report the experimental observation of the transition to condensation of classical optical waves propagating in a multimode fiber, i.e., in a conservative Hamiltonian system without thermal heat bath. In contrast to conventional self-organization processes featured by the non-equilibrium formation of nonlinear coherent structures (solitons, vortices...), here the self-organization originates in the equilibrium Rayleigh-Jeans statistics of classical waves. The experimental results show that the chemical potential reaches the lowest energy level at the transition to condensation, which leads to the macroscopic population of the fundamental mode of the optical fiber. The near-field and far-field measurements of the condensate fraction across the transition to condensation are in quantitative agreement with the Rayleigh-Jeans theory. The thermodynamics of classical wave condensation reveals that, in opposition to quantum Bose-Einstein condensation, the heat capacity takes a constant value in the condensed state and tends to vanish above the transition in the normal state. Our experiments provide the demonstration of a coherent phenomenon of self-organization that is exclusively driven by the statistical equilibrium properties of classical light waves.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源