论文标题

经典$ n $ - 体积和体积变量的体系统。 I.三体案例

Classical $n$-body system in geometrical and volume variables. I. Three-body case

论文作者

Escobar-Ruiz, A. M., Linares, R., Turbiner, Alexander V, Miller Jr, Willard

论文摘要

我们考虑了$ d $ d $自由度$(d> 1)$的经典三体系统,总角度动量。该研究仅限于仅取决于相对(相互)距离$ r_ {ij} = \ mid {\ bf r} _i- {\ bf r} _j \ mid $之间的潜力$ v $。遵循J. L. Lagrange的提议,在质量中心框架中,我们将相对距离(与角度互补)作为广义坐标介绍,并表明动能不取决于$ d $,确认了Murnaghan(1936)的结果,以$ d = 2 $和van kampen-Wintner(1937)的$ D = 3 $ s = 3 $ sosevers of Sudss ace coodss n of Suffors foses suf Sudess actoss。实现$ \ mathbb {z} _2 $ -smmetry $(r_ {ij} \ rightArrow -r_ {ij})$我们引入了新变量$ρ_{ij} = r_ {ij}^2 $,这使我们能够使腹部的pensor of intertia of Bertertia nortia nortia nortialulinalulinalulinal coldisululinalulinal intiralulinal contivisal interialulinal intermuction。在这些变量中,动能是$ρ$ - 相空间中的多项式函数。 3个身体位置形成一个三角形(相互作用),动能为$ \ MATHCAL {s} _3 $ - 孔子不变的身体位置和质量的互换(以及三角形和质量边缘的WRT互换)。对于相等的质量,我们使用$ \ mathbb {z} _2^{\ otimes3} \ oplus \ mathcal \ mathcal {s} _3 $的最低顺序对称多项式不变式来定义新的广义坐标,它们称为{\ IT GEOMETIC变量}。其中两个是最低顺序(三角形的侧面和区域平方的平方之和)称为{\ it卷变量}。我们详细研究了三个示例:(i)$ d = 3 $,(ii)3型牛顿重力的3体编排,$ d = 2 $在代数上的fujiwara等人的代数lemanistate,其中该问题在几何变量中变为一维变量,以及(iii)(III)。

We consider the classical 3-body system with $d$ degrees of freedom $(d>1)$ at zero total angular momentum. The study is restricted to potentials $V$ that depend solely on relative (mutual) distances $r_{ij}=\mid {\bf r}_i - {\bf r}_j\mid$ between bodies. Following the proposal by J. L. Lagrange, in the center-of-mass frame we introduce the relative distances (complemented by angles) as generalized coordinates and show that the kinetic energy does not depend on $d$, confirming results by Murnaghan (1936) at $d=2$ and van Kampen-Wintner (1937) at $d=3$, where it corresponds to a 3D solid body. Realizing $\mathbb{Z}_2$-symmetry $(r_{ij} \rightarrow -r_{ij})$ we introduce new variables $ρ_{ij}=r_{ij}^2$, which allows us to make the tensor of inertia non-singular for binary collisions. In these variables the kinetic energy is a polynomial function in the $ρ$-phase space. The 3 body positions form a triangle (of interaction) and the kinetic energy is $\mathcal{S}_3$-permutationally invariant wrt interchange of body positions and masses (as well as wrt interchange of edges of the triangle and masses). For equal masses, we use lowest order symmetric polynomial invariants of $\mathbb{Z}_2^{\otimes3} \oplus \mathcal{S}_3$ to define new generalized coordinates, they are called the {\it geometrical variables}. Two of them of the lowest order (sum of squares of sides of triangle and square of the area) are called {\it volume variables}. We study three examples in some detail: (I) 3-body Newton gravity in $d=3$, (II) 3-body choreography in $d=2$ on the algebraic lemniscate by Fujiwara et al where the problem becomes one-dimensional in the geometrical variables, and (III) the (an)harmonic oscillator.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源