论文标题
多模式的片上纳米镜检查和定量相图像揭示了肝弦曲丝网膜结构细胞的形态
Multi-modal on-chip nanoscopy and quantitative phase image reveals the morphology of liver sinusoidal enodthelial cells
论文作者
论文摘要
生物标本亚细胞结构中三维形态变化的可视化是生命科学中最大的挑战之一。尽管光学纳米镜检查明显改进,但测定了亚细胞结构的定量变化,即尺寸和厚度仍然难以捉摸。我们提出了基于芯片的集成光学纳米镜检查,该设置提供了61 nm的横向光学分辨率,并结合具有高度敏感的定量相显微镜(QPM)系统,其空间相位灵敏度为$ \ pm $ 20 MRAD。我们使用该系统获得肝窦内皮细胞(LSEC)的3D形态,并结合了超级分辨的空间信息。 LSEC具有独特的形态,其纳米孔存在于质膜中,称为塞术。 Fenestrations分组在称为筛子的簇中,呈筛子,厚度约为100 nm。因此,对屏蔽和筛板厚度的成像和定量需要沿侧向和轴向方向分辨率和敏感性。在基于CHIP的纳米镜中,光学波导既用于托管和照明样品。在波导表面的顶部产生了一个强烈的evanevencent场,以进行单分子荧光激发。荧光信号通过直立显微镜捕获,该显微镜将转换为Linnik型干涉仪,以顺序获取样品的超级分辨图像和定量相信息。多模式显微镜提供了对124 $ \ pm $ 41 nm的静脉直径的估计,并揭示了筛子的平均估计厚度在两个不同单元的范围内为91.2 $ \ pm $ 43.5 nm。这些技术的组合提供了横向尺寸(使用纳米镜检查)和筛子厚度图的可视化,即以qpm模式下的离散簇弹性。
Visualization of three-dimensional morphological changes in the subcellular structures of a biological specimen is one of the greatest challenges in life science. Despite conspicuous refinements in optical nanoscopy, determination of quantitative changes in subcellular structure, i.e., size and thickness, remains elusive. We present an integrated chip-based optical nanoscopy set-up that provides a lateral optical resolution of 61 nm combined with a highly sensitive quantitative phase microscopy (QPM) system with a spatial phase sensitivity of $\pm$20 mrad. We use the system to obtain the 3D morphology of liver sinusoidal endothelial cells (LSECs) combined with super-resolved spatial information. LSECs have a unique morphology with nanopores that are present in the plasma membrane, called fenestration. The fenestrations are grouped in clusters called sieve plates, which are around 100 nm thick. Thus, imaging and quantification of fenestration and sieve plate thickness requires resolution and sensitivity of sub-100 nm along both lateral and axial directions. In the chip-based nanoscope, the optical waveguides are used both for hosting and illuminating the sample. A strong evanescent field is generated on top of the waveguide surface for single molecule fluorescence excitation. The fluorescence signal is captured by an upright microscope, which is converted into a Linnik-type interferometer to sequentially acquire both super-resolved images and quantitative phase information of the sample. The multi-modal microscope provided an estimate of the fenestration diameter of 124$\pm$41 nm and revealed the average estimated thickness of the sieve plates in the range of 91.2$\pm$43.5 nm for two different cells. The combination of these techniques offers visualization of both the lateral size (using nanoscopy) and the thickness map of sieve plates, i.e. discrete clusters fenestrations in QPM mode.