论文标题
反应性分子偶极蒸发至费米温度以下
Dipolar evaporation of reactive molecules to below the Fermi temperature
论文作者
论文摘要
分子是物质的基础,它们的控制是研究新量子阶段的关键,在这里,可以使用丰富的自由度来编码信息,并且可以精确调整强烈的相互作用。但是,分子碰撞中的非弹性损失极大地阻碍了低渗透分子系统的工程。到目前为止,通过两种高度退化的原子气体的关联而产生了唯一的量子变性气体。在这里,我们使用一个外部电场以及光学晶格限制,创建了自旋极化钾 - 岩石(KRB)极性分子的二维(2D)费米气体,其中弹性,可调的偶极相互作用在所有弹性过程中占主导地位。陷阱中分子之间的直接热化导致有效的偶极蒸发冷却,从而迅速增加相位空间密度。在量子退化开始时,我们观察到费米统计数据对分子气体热力学的影响。这些结果表明,在偶极分子气体中实现量子退化的一般策略,以探索强烈相互作用的多体阶段。
Molecules are the building blocks of matter and their control is key to the investigation of new quantum phases, where rich degrees of freedom can be used to encode information and strong interactions can be precisely tuned. Inelastic losses in molecular collisions, however, have greatly hampered the engineering of low-entropy molecular systems. So far, the only quantum degenerate gas of molecules has been created via association of two highly degenerate atomic gases. Here, we use an external electric field along with optical lattice confinement to create a two-dimensional (2D) Fermi gas of spin-polarized potassium-rubidium (KRb) polar molecules, where elastic, tunable dipolar interactions dominate over all inelastic processes. Direct thermalization among the molecules in the trap leads to efficient dipolar evaporative cooling, yielding a rapid increase in phase-space density. At the onset of quantum degeneracy, we observe the effects of Fermi statistics on the thermodynamics of the molecular gas. These results demonstrate a general strategy for achieving quantum degeneracy in dipolar molecular gases to explore strongly interacting many-body phases.